Compressed sensing (CS) has been proposed to reduce operating cost (e.g., energy requirements) of acquisition devices by leveraging its capability of sampling and compressing an input signal at the same time. This paper aims at increasing CS performance (i.e., either achieving a better compression or allowing a higher signal reconstruction quality) and proposes two novel methods. Our first approach (Nearly Orthogonal CS) is based on a geometric constraint enforcing diversity between compressed measurements, while the second one (Maximum-Energy CS) on a heuristic screening of candidate measurements that acts as a run-time self-adapted optimization technique. Intensive simulation results show that the proposed approaches have different applications, and ensure an appreciable performance boost with respect to the state-of-the-art.

Adaptive Matrix Design for Boosting Compressed Sensing / Mangia, Mauro; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS. - ISSN 1549-8328. - STAMPA. - 65:3(2018), pp. 1016-1027. [10.1109/TCSI.2017.2766247]

Adaptive Matrix Design for Boosting Compressed Sensing

Pareschi, Fabio;Setti, Gianluca
2018

Abstract

Compressed sensing (CS) has been proposed to reduce operating cost (e.g., energy requirements) of acquisition devices by leveraging its capability of sampling and compressing an input signal at the same time. This paper aims at increasing CS performance (i.e., either achieving a better compression or allowing a higher signal reconstruction quality) and proposes two novel methods. Our first approach (Nearly Orthogonal CS) is based on a geometric constraint enforcing diversity between compressed measurements, while the second one (Maximum-Energy CS) on a heuristic screening of candidate measurements that acts as a run-time self-adapted optimization technique. Intensive simulation results show that the proposed approaches have different applications, and ensure an appreciable performance boost with respect to the state-of-the-art.
File in questo prodotto:
File Dimensione Formato  
TCASI08197378(versione submittedto).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 765.32 kB
Formato Adobe PDF
765.32 kB Adobe PDF Visualizza/Apri
Pareschi-Adaptive_Matrix.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2704927