Compressed sensing (CS) has been proposed to reduce operating cost (e.g., energy requirements) of acquisition devices by leveraging its capability of sampling and compressing an input signal at the same time. This paper aims at increasing CS performance (i.e., either achieving a better compression or allowing a higher signal reconstruction quality) and proposes two novel methods. Our first approach (Nearly Orthogonal CS) is based on a geometric constraint enforcing diversity between compressed measurements, while the second one (Maximum-Energy CS) on a heuristic screening of candidate measurements that acts as a run-time self-adapted optimization technique. Intensive simulation results show that the proposed approaches have different applications, and ensure an appreciable performance boost with respect to the state-of-the-art.
Adaptive Matrix Design for Boosting Compressed Sensing / Mangia, Mauro; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS. - ISSN 1549-8328. - STAMPA. - 65:3(2018), pp. 1016-1027. [10.1109/TCSI.2017.2766247]
Adaptive Matrix Design for Boosting Compressed Sensing
Pareschi, Fabio;Setti, Gianluca
2018
Abstract
Compressed sensing (CS) has been proposed to reduce operating cost (e.g., energy requirements) of acquisition devices by leveraging its capability of sampling and compressing an input signal at the same time. This paper aims at increasing CS performance (i.e., either achieving a better compression or allowing a higher signal reconstruction quality) and proposes two novel methods. Our first approach (Nearly Orthogonal CS) is based on a geometric constraint enforcing diversity between compressed measurements, while the second one (Maximum-Energy CS) on a heuristic screening of candidate measurements that acts as a run-time self-adapted optimization technique. Intensive simulation results show that the proposed approaches have different applications, and ensure an appreciable performance boost with respect to the state-of-the-art.File | Dimensione | Formato | |
---|---|---|---|
TCASI08197378(versione submittedto).pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
765.32 kB
Formato
Adobe PDF
|
765.32 kB | Adobe PDF | Visualizza/Apri |
Pareschi-Adaptive_Matrix.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2704927