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Adaptive Matrix Design
for Boosting Compressed Sensing

Mauro Mangia, Member, IEEE, Fabio Pareschi, Member, IEEE, Riccardo Rovatti, Fellow, IEEE,
Gianluca Setti, Fellow, IEEE,

Abstract—Compressed Sensing (CS) has been proposed to
reduce operating cost (e.g., energy requirements) of acquisition
devices by leveraging its capability of sampling and compressing
an input signal at the same time. This paper aims at increasing
CS performance (i.e., either achieving a better compression or
allowing a higher signal reconstruction quality) and proposes
two novel methods. Our first approach (Nearly-Orthogonal CS)
is based on a geometric constraint enforcing diversity between
compressed measurements, while the second one (Maximum-
Energy CS) on a heuristic screening of candidate measurements
that acts as a run-time self-adapted optimization technique.
Intensive simulation results show that the proposed approaches
have different applications, and ensure an appreciable perfor-
mance boost with respect to the state of the art.

I. INTRODUCTION

COMPRESSED Sensing (CS) is a signal processing tech-
nique that allows, at the same time, acquisition and com-

pression of sparse input signals. This approach has been pro-
posed [1], [2] to replace Analog-to-Digital Converters (ADCs)
with appealing and resource-efficient Analog-to-Information
Converters (AICs). Under the hypothesis of sparse input sig-
nals, it has been proven that a number of linear measurements
potentially smaller than the corresponding number of Nyquist-
rate samples, is enough to correctly reconstruct the input
signal.

A number of AIC prototypes have recently been proposed
in the literature. Applications range from biomedical signals
[3], [4], [5] to radio-frequency signals [6], [7]. The peculiarity
of all designs is that resources needed for the acquisition are
tied to the information rate of the input signals and not to their
bandwidth. Implementations are either analog or based on a
pure digital approach [8]. In particular, once can show [9],
[10] that CS may lead to clear practical advantage when used
in early-digital compression stages of full digital architectures.

The cost of using such a simple and convenient sub-Nyquist
sampling stage is paid at the recovery stage, where signal
reconstruction from compressed measurements requires the
solution of a convex optimization problem [11]. Nevertheless,
many particular scenarios exist where this peculiarity makes
CS extremely appealing: a typical example is given by Body
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Area Sensor Networks (BASNs) [12], [13] where a large num-
ber of low-complexity, miniaturized, battery-powered sensor
nodes used for the acquisition of biological signals exploit the
capabilities offered by the CS approach at the sensing stage,
while the more power-hungry decoding stage is executed on
a central gateway where energy is not a critical issue.

In this paper, we focus on the optimization of CS perfor-
mance, either as an increase of the compression capability
(i.e., a decrease in the amount of information produced by the
sampling process) required for achieving a target quality, or
an increase of the reconstruction quality given an information
amount budget. A few works have recently been proposed on
this topic. Some of them focus on the decoder side, proposing
a reconstruction algorithm adapted to the peculiarities of the
considered signal [14], [15] or a run-time adaptation of the
sparsity basis to the input signal (dictionary learning) [16].
Others focus on the encoder side [17], [18], [19], [20], [21].
Note that, in the most general case, optimization at the encoder
and at the decoder side is independent, and both techniques
can be applied at the same time.

The aim of this paper is to make a step further in the
field of encoder-side optimization. The state of the art is
currently focused on two different approaches. From the one
side there are some signal-agnostic techniques known as
mutual coherence minimization [19], [20], [21], where the CS
acquisition is designed to reinforce theoretical requirements
[2] without any additional assumption on the characterization
of the acquired class of signals. A second line of research
shows that better results can be achieved when some priors on
the input signal are used. The rakeness approach [17] aligns
second-order statistical properties of the CS sensing stage with
that of the input signal, while at the same time preserving
requirements for a correct signal reconstruction needed by the
standard CS theory.

This paper is a follow-up of [18] and proposes, following
the same strategy of aligning sensing stage to the input
signals features, two simple performance boosting strategies.
The first one (Maximum-Energy CS) has been introduced in
[18] and it is based on the computation of a number of
measurements much higher than what strictly necessary, and
on the selection of those with largest energy. The second
(Nearly-Orthogonal CS), similarly to the rakeness-based ap-
proach [17], design the sensing process on the statistics of the
acquired class of signals. With respect to rakeness-based CS,
Nearly orthogonal CS ensures a minimum angle between each
couple of directions along which the signal is projected during
the acquisition. Roughly speaking, this reduces the overlap
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in terms of information carried by each measurement thus
minimizing redundancy.

The paper is organized as follows. Aim of Section II is to
summarize the main concepts of CS and to introduce the no-
tation. Section III describes some optimization techniques, in-
cluding the Nearly-Orthogonal CS and the Maximum-Energy
CS approaches. In Section IV, a comparison between results
achieved by the considered techniques is provided by means
of extensive simulations. Finally, we draw the conclusion.

II. OVERVIEW OF COMPRESSED SENSING

The CS formulation adopted here is the discrete-time one,
where the input signal is an instance of a given stochastic
process, and it is represented by the set of its n samples x =
(x0, . . . , xn−1)

> ∈ Rn collected at Nyquist rate.
The key assumption of the entire CS framework is sparsity.

Namely, a process is κ-sparse if a proper n-dimensional
sparsity basis S ∈ Rn×n exists, in which any possible signal
instance x = Sξ is represented by a vector ξ ∈ Rn with no
more than κ� n non-zero components.

It is intuitive that, for a sparse signal, the number of degrees
of freedom in x is considerably smaller than n. This property
has been leveraged by theory [11], which shows that any
input signal instance can be captured by a set of m < n
properly designed linear measurements. By indicating with
y the m-dimensional vector y = (y0, . . . , ym−1)

> ∈ Rm
collecting such measurements, a sensing matrix A ∈ Rm×n
can be defined as the linear operator generating y from x, i.e.,
y = Ax = ASξ.

Formal results [11], [22] guarantee that ξ (and thus x) can
be recovered from y provided that m = O(κ log n), despite the
fact that A (and thus AS) yields a dimensionality reduction.
Roughly speaking, there is a twofold rationale behind these
guarantees. First, sensing rows of A should not be aligned
with any vector in the sparsity basis S, thus avoiding the
possibility of an almost-zero energy measurement. This is
known as incoherence. Then, generic κ-sparse vectors need to
be mapped almost isometrically into the measurements, i.e.,
the energy of ξ has to be almost the same of y [1].

Under these hypotheses, the recovery of the original x from
y is possible by enforcing the a priori knowledge that its
representation ξ is sparse. Mathematically, many algorithms
have been explored to do so and improved in recent years [11],
[23], [24]. Indicating with x̂ = Sξ̂ the recovered signal, most
of them are based on the solution of the convex optimization
problem

ξ̂ = arg min
ξ∈Rn

‖ξ‖1
s.t. ‖ASξ − y‖22 ≤ ε2

(1)

where the 1-norm ‖ξ‖1 is used to promote sparsity, and
‖ASξ − y‖22 is the usual Euclidean norm indicating the
accuracy with which the measurements y are matched by the
solution. The value of the constant ε ≥ 0 should be chosen
proportionally to the amount of noise expected on y. Note
that, according to the constraint in (1), the knowledge of S
is required at the decoding stage, but not at the encoding

one. Conversely, A needs to be a shared knowledge between
encoder and decoder.

Most of the practical interest in CS is due to the fact that the
aforementioned mathematical conditions required for the cor-
rect signal reconstruction are satisfied (in probabilistic terms)
by simply drawing sensing matrix A at random. Although
theoretical guarantees depend on the choice of the specific
distribution [25], a wide class of random matrices allows effec-
tive signal recovery [22]. In practical cases, the most common
choice is to draw elements of A by means of an antipodal
Bernoulli distribution, i.e., A ∈ {−1,+1}m×n where −1 and
+1 occur with the same probability. This hardware-friendly
choice is typically adopted in actual implementations of AIC
[4], [5], [6], [7] and allow to replace expensive multiply-and-
accumulate operations required in the computation of y = Ax
with much simpler sum and sign inversion operations. For this
reason, from now on we will focus on antipodal sensing matrix
only.

III. SENSING OPTIMIZATION

Designing sensing matrices A as instances of a random
antipodal process ensures the highest possible generality as
this applies equally well to any possible class of sparse input
signals, i.e., any stochastic process modeling the generation of
sparse instances x. However, performance may not be optimal
if one has to deal with a CS system specialized to some
particular class of signals. In this case, even if x is actually
unknown a-priori, CS performance can be boosted by properly
adopted matrices A.

A first step along this way has been proposed in the
literature, introducing design guidelines that aim to increase as
much as possible the mutual coherence of AS [26], [14]. Note
however that the relationship between system performance
and properties like the mutual coherence is related only to a
bound on the reconstruction performance, and not to the actual
average system behavior. In other words, there is almost no
relation between reconstructed quality observed in practical
CS implementations and any numerical evaluation of the
aforementioned properties.

Another interesting approach is presented in [27] that
proposes deterministic sensing matrix where A is composed
by rows of an Hadamard transformation matrix, aiming at
maximizing the entropy of the measurement vector. Although
this is a very promising approach, the adoption of deterministic
sensing sequences does not guarantee correct reconstruction of
signals sparse in any possible domain.

In this section we propose a set of three sensing optimization
procedures that exploit statistical properties of the process
generating x. More precisely, we investigate localization, i.e.,
the property of the class of sparse input signals to present an
energy distribution that is not uniform over the whole signal
space. This property is quite common among real signals [17].

To provide an intuitive idea of localization, consider the
simple toy case shown in Figure 1. The focus is on a class of
signals whose instances are points on the surface of a sphere.
The case in Figure 1(a) refers to a signal x that uniformly
spans the whole surface, while Figure 1(b) is the case of a
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(a) (b)
Fig. 1. Points on the sphere surface as instances of a purely random signal
(a) and as instances of a localized signal (b).

localized signal, where the probability of a point on the surface
to be a signal instance is not uniform.

Mathematically, a class of signal is localized when its
correlation matrix X = E[xx>] is not a multiple of the n×n
identity matrix IIIn, or in case one deals with slices of a random
process, when the power spectrum is not flat. We evaluate
the localization property by computing the deviation of the
eigenvalues of X from the isotropic case as in the following
definition

Lx =

n−1∑
j=0

(
µj

tr(X ) −
1

n

)2

=
tr
(
X 2
)

tr2(X ) −
1

n
(2)

where µj is the j-th eigenvalue of X and tr(·) stands for
matrix trace.

Note that non-localized signals come as instances of a white
random stochastic process. In this case, all eigenvalues are
equal to each others, with Lx = 0. The opposite case is when
signals are non-white random, and concentrated along one
direction only, i.e., a single eigenvalue is not null. In this case
the localization value is maximum and equal to Lx = 1− 1

n .
Note also that sparsity and localization are different and

independent priors. An example is represented by the class of
signals of Figure 1(b): it is localized but not sparse. Sparsity
implies that x lies in a union of κ-dimensional subspaces,
while localization refers to a non-flat energy profile.

A. Rakeness-based CS

In [17], [28] a technique able to adapt the sensing matrix
A to the localization profile of the class of signals to be
acquired is introduced. The approach is known as rakeness-
based CS (Rak-CS), and its basic underlying idea is to adapt
the correlation profile of the rows of A to the one of the
input signals1. When dealing with a localized signal, some
directions exist along which the signal is most likely lying,
easily identifiable from X . Rak-CS uses this prior to design
sensing matrix rows that focus on those directions. Note That,
also other less energetic directions must still be explored,
in order to correctly reconstruct uncommon signal instances.

1Infinitively this concept is similar to what we used in [29][30] to optimize
(chaos-based) DS-CDMA communication, in which hip waveforms, spreading
sequence statistics and rake receivers taps were jointly chosen to rake more
energy at the receiver.

In other words, one should not limit to observe privileged
directions, but all the signal space has still to be considered.

More precisely, the design procedure is as follows. Let us
indicate with a = (a0, . . . , an−1)

> the vector corresponding
to a generic row of A. The correlation matrix A = Ea[aa

>]
identifying the process to be used for generating a is given by
the solution of the following optimization problem.

max
A

tr (AX ) (3a)

s.t. tr(A) = e (3b)
s.t. Aj,k = Ak,j j, k ∈ {0, . . . , n− 1} (3c)
s.t. A � 0 (3d)
s.t. La ≤ `Lx (3e)

Since Ea,x

[(
a>x

)2]
= tr (AX ), (3a) aims to maximize

the expected energy of each of the entry of the measurement
vector evaluated as a>x. This is how Rak-CS is able to focus
the sensing process along directions where signal concentrates
its energy. Conversely, constraint (3e) ensures the spanning of
the whole signal space by imposing an upper bound for the
localization of the sensing sequences, that has to be smaller
(more precisely, scaled by a parameter `) with respect to the
input signal localization. A common choice is ` = 0.25 [31].
Aim of (3b) is to impose that each sensing sequences has the
same finite energy e, while Equations (3c) and (3d) impose
matrix A to be symmetric and positive semi-definite..

According to [28], the correlation matrix A solving the
above constrained optimization problem is given by

A = e

( X
tr(X )

√
`+

1

n
IIIn

(
1−
√
`
))

Interestingly, assuming to be capable of generating antipodal
sequences with a prescribed correlation, Rak-CS is perfectly
compatible with the hardware-friendly choice of having an-
tipodal sensing matrix. In this case, a ∈ {−1,+1}n, and it is
easy to see that e = n and that A can be written as

A =
nX
tr(X )

√
`+ IIIn

(
1−
√
`
)

(4)

The generation of antipodal sequences with an assigned pro-
file has been already discussed in [17], [28]. Here it is enough
to highlight that different approaches can be used according
to the peculiarity of the actual CS system implementation.

Assuming a CS encoder whose hardware is designed so that
sensing sequences (i.e., the rows of A) are pre-computed and
stored in a local memory, the clipping of Gaussian random se-
quences with a correlation profile that is a pre-distorted version
of the desired one [32] is the easiest approach. Note that in this
setting, the adoption of Rak-CS is completely transparent to
the encoding stage. No additional costs are required in terms of
energy requirement or hardware complexity, since it is enough
to load sequences generated according to (4) into memory.

If instead an on-the-fly generaton of A is necessary, the use
of a linear probability feedback generator [33] along with a
lookup table approach [34] represents a possible replacement
of an independent and identically distributed antipodal random
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number generator required by standard CS. A simple hardware
implementing this solution is the linear feedback shift register
(see, f.i., [4], [8]) even if sometimes a more complex hardware
is adopted [3].

B. Nearly-Orthogonal CS

Rak-CS administrates the trade-off between the ability to
focus sensing on a proper region of the signal space and the
need to span the whole space. Nearly-Orthogonal CS (NeO-
CS) relies on a different trade-off to allow the whole space
to be spanned. More precisely, let first adopt the correlation
matrix of the input signal as that of the sensing matrix rows,
excepts for a scaling factor due to the antipodality constraint.
Mathematically we have

A = n
X

tr(X ) (5)

Note that this automatically implies La = Lx.
The constraint for allowing this approach to span the

entire signal space is based on the observation that, for large
La = Lx, the generation of A could result in a matrix
with many very similar rows, whose associated measurements
would bring almost the same information. To avoid this, we
impose a bound on the minimum angles between each couples
of rows composing A.

Assume that the rows of A are made of samples from an
antipodal zero-mean and mixing stochastic process with power
spectrum Sa(f) and autocorrelation profile

Ca(τ) =

∫ 1/2

−1/2

Sa(f)e
2πifτd f

so that the entries of the correlation matrix A = E[aa>] are
Aj,k = Ca(k − j) where a is the generic A row.

If two independent rows a′ and a′′ are taken, the cosine of
their angle α = â′a′′ is

cos(α) =
(a′)>a′′

‖a′‖2‖a′′‖2
=

1

n

n−1∑
j=0

a′ja
′′
j (6)

where we have exploited the fact that for n-dimensional
antipodal vectors ‖a′‖2 = ‖a′′‖2 =

√
n.

Now, let us consider bj = a′ja
′′
j . The corresponding

process is mixing, with a correlation function Cb(τ) =
E[a′0a

′′
0a
′
τa
′′
τ ] = E[a′0a

′
τ ]E[a′′0a

′′
τ ] = C2

a(τ). Hence, by ap-
plying [35, Theorem 27.4] we know that

1√
n

n−1∑
j=0

bj ∼
n→∞

N
(
0, σ2

)
(7)

i.e., it is asymptotically Gaussian with zero mean and variance

σ2 =

∞∑
τ=−∞

C2
a(τ) (8)

Thanks to the Parseval’s equality we also know that σ2 =∑∞
τ=−∞ C2

a(τ) =
∫ 1/2

−1/2
S2
a(f)d f . Moreover, if one considers

the eigenvalues λj of the correlation matrix A, the main
theorem in [36, Chapter 5] states that

σ2 =

∫ 1/2

−1/2

S2
a(f)d f = lim

n→∞

1

n

n−1∑
j=0

λ2j

from which, given that for antipodal processes tr(A) = n, we
infer that for large values of n

σ2 ' n trA2

tr2(A) = nLa + 1

where the last equality directly descends from the definition
of localization (2). Since cos(α) is 1/

√
n times the normalized

sum in (7), we finally have

cos(α) ∼
n→∞

N
(
0,La +

1

n

)
(9)

This ascertained, the probability p that two rows of A can
be considered orthogonal up to a certain tolerance θ is

p = Pr {|cos(α)| ≤ θ} = erf

(
θ√

2 (Lx + 1/n)

)
(10)

where Lx = La is imposed according to the proposed method.
Equation (10) can be also inverted to determinate the

threshold θ on the maximum value of |cos(α)| with a certain
probability p such that

θ =

√
2

(
Lx +

1

n

)
erf−1(p) (11)

Clearly, (10) holds only for two rows of A, while the
proposed method imposes a maximum value of |cos(α)| to any
possible couple of rows. In this sense (11) could be used only
as a guideline in the evaluation of θ to be imposed to the entire
matrix, and the probability that the imposed minimum angle
condition holds between any couple of rows rapidly decreases
with m.

Overall, the design of a sensing matrix based on NeO-CS
can be summarized as follow:

1) a first antipodal row is generated with a correlation
profile as in (5);

2) to obtain the second row, antipodal sequences with the
same correlation matrix are generated until |cos(α)| ≤ θ
where α is the angle between the current sequences and
the first row and θ is evaluated by (11) given the value
of p;

3) the rows generation goes ahead as in the previous step,
where the constraint on the minimum angle is imposed
with respect to all previously generated rows.

Note that the above algorithm is quite complex, and not
designed for the on-the-fly generation of the rows of A. NeO-
CS finds therefore natural applications in encoders where
sensing sequences are pre-computed and stored in a local
memory. In this case, as in the Rak-CS approach, optimization
comes with no additional costs in terms of encoder energy
requirement or complexity, since it is enough lo load sequences
generated with the described procedure into memory.
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CS encoder CS decoder

x ỹ = Ãx
measurements

selection
J̃
y

A = ÃJ̃,· 1-norm
minimization x̂

Fig. 2. System implementing the Max-CS.

C. Maximum-Energy CS

Both Rak-CS and NeO-CS rely on off-line procedures to
tune A to X . This section describes a run-time approach: here
the alignment of the rows of A with directions of x is achieved
by looking at the m rows that, among M candidates (with
M > m), have the largest energy. We refer to this technique
as Maximum-Energy CS (Max-CS).

Limiting to the hardware-friendly antipodal case, and indi-
cating with Ã ∈ {−1,+1}M×n a matrix with white random
antipodal entries, we can formalize the approach as follows.

1) Given the actual input signal instance x, the whole set
of the M candidate rows memorized in Ã is used to
compute the set of M measurements by means of the
vector

ỹ = Ãx

2) The m elements of ỹ with the highest absolute values
are identified.
Let J̃ be the set of indexes of these elements, and let
A ∈ {−1,+1}m×n be the matrix composed by the rows
of Ã addressed by J̃ . In this way y = Ax is the m-size
measurement vector with the highest energy.

3) For each signal instance, the decoder stage retrieves from
the encoder, both J̃ and y. Assuming that Ã is known
both by the encoder and by the decoder, retrieving J̃
allows the decoder to compose A and to reconstruct x̂
from y by (1) without any additional requirement.

A visual representation of the system implementing the
described approach is shown in Figure 2.

The main advantage of the Maximum-Energy approach
is the adaptability of the sensing procedure to each signal
instance without any requirements on the knowledge of the
statistic of input signal class. In other words, Max-CS is a
run-time self-adapting CS encoder.

Note that, with this approach J̃ must be transmitted along
with y. The overhead due to the transmission of J̃ must
be compensated by a proper reduction of the number of
measurement needed to correctly reconstruct x. In order to
determine if the trade-off is profitable, we have to compare
Max-CS behavior with that of others CS approaches by taking
into account the total amount of transmitted information from
the encoder to the decoder. To this aim, let us compute the
total amount of bits used for each signal instance by a Max-CS
based encoder.

The number of bits required to encode J̃ depends both on
M and m. Even if plenty of different coding techniques can
be considered, the smartest one is to identify which specific
subset of m elements among M possible candidates is the
correct one among the

(
M
m

)
possibilities. As a consequence,

the corresponding minimum amount of bits bJ̃(M,m) required
to represent J̃ is

bJ̃(M,m) =

⌈
log2

(
M

m

)⌉
(12)

where d·e is the smallest integer not smaller than its argument.
So, the overall encoding of m measurements, each one with

by bits, and of J̃ requires mby + bJ̃(M,m) bits. Comparing
this with the straightforward option of a Nyquist approach,
where n samples are encoded with bx bits, gives rise to a
bit-wise compression ratio

CRbit =
nbx

mby + bJ̃(M,m)
(13)

In the next section, by means of a few practical examples,
the CRbit in (13) will be compared with that achieved by
standard CS, Rak-CS and NeO-CS, that is simply given by
(13) when assuming bJ̃(M,m) = 0. The role of M as
degree of freedom in the design of a Max-CS system will
also be investigated. In fact, clearly, increasing M increases
the possibility to have rows of Ã with a good alignment
with the principal signal instance components (i.e., to have
measurements with a high absolute value), and this could
increase performance. However, M should not be too large
to avoid a drastic reduction of CRbit.

As a final comment, it may be interesting to evaluate
what is the overhead in terms of complexity of the Max-
CS approach with respect to the standard CS. Two aspects
have to be considered. First, M measurements have to be
computed instead of m. Accordingly, the complexity increase
of the projection stage is M/m. Then, measurements has
to be sorted according to their absolute value. The most
common sorting algorithms (quicksort, heapsort, . . .) present
an average complexity equal to M log2M . However, Max-CS
does not require a fully sorted measurement list, but only the
identification of the m elements with highest value. Without
entering into details, it is possible to see that, for m � M ,
the asymptotic complexity for this task is O(m logM).

IV. RESULTS

A. Framework for Performance Evaluation

To compare the performance of the considered approaches,
a set of results based on extensive Montecarlo simulations is
provided. Two figures of merit are used. First, let us define
the Reconstruction Signal-to-Noise-Ratio (RSNR) as the ratio
(expressed in dB) between the 2-norm of the input signal
instance x and the 2-norm of the reconstruction error x − x̂.
The first figure of merit considered is the Average RSNR
(ARSNR) expected over any possible input signal instance
and any possible sensing matrix

ARSNR = E
A,x

[
20 log10

( ‖x‖2
‖x− x̂‖2

)]
that we evaluate as the average RSNR observed in the trials.

Alternatively, reconstructions performance can be evalu-
ated by assuming that the reconstruction is correct when
the corresponding RSNR exceeds a certain minimum value
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RSNRmin. As such, the second figure of merit considered is
the Probability of Correct Reconstruction (PCR) defined as

PCR = Pr{RSNR ≥ RSNRmin}
that we estimated using the success rate over the trials.

To cope with possible different class of signals, a simulation
environment has been developed to generate n-dimensional
instances x that are both localized and κ-sparse with respect
to a certain orthonormal basis S. The signal generation starts
from an instance of a zero-mean Gaussian random vector x′

with covariance/correlation matrix X ′ and follows these steps:
1) take x′ ∼ N (0,X ′) as initial vector;
2) compute ξ′ as the representation of x′ over S such that

ξ′ = S−1x′ = S>x′;

3) select the κ element of ξ′ with the higher absolute values
to obtain the vector ξ;

4) finally, compute x = Sξ.
The approach aims to formalize the intuitive idea of taking a
possibly non-white vector (x′), project it onto the basis along
which we want the signal to be sparse, sparsify it, and map it
back into its original basis.

A proper localization can be imposed by using a non-
diagonal X ′ whose features will approximately be translated
into those of X , i.e., the correlation matrix of the generated
signals. Despite the fact that the relationship between X ′ and
X is difficult to model analytically, we may expect to have
only a relative low difference in the statistics of x with respect
to that imposed to x′. In fact, since the κ largest components
of ξ′ are carried over to ξ, ξ is the best possible κ-sparse
approximation of ξ′, and the same relationship holds between
x and x′. Hence, the larger the κ, the more similar the behavior
of x to that of x′.

In the following, we will consider X ′ such that X ′j,k =

r|j−k| for some −1 < r < 1. This means that x′ is a chunk
of a stationary stochastic process that assumes a high pass
profile for −1 < r < 0 and a low-pass profile for 0 < r < 1.
Furthermore, we set n = 128, κ = 6 and S to be either the
orthonormal Discrete Cosine Transform (DCT) basis or the
Daubechies-8 Wavelet transformation basis (DAUB). With this
setting, and by generating a large amount of sample vectors
x′ and thus of x, it is possible to estimate the localization Lx
for any given value of r.

The proposed simulation setting is reported in Table I, and
includes signals with either a low-pass (LP) or a high-pass
(HP) profile, and signals that are highly localized (HL) or
that are lowly localized (LL). Although this is not represen-
tative for any possible class of signals, it includes cases of
sparse signals with opposite power spectrum profiles, with
different localization values and different sparsity matrices.
In particular, the choice of S aims at including a case (the
DCT) presenting columns that have only a limited number of
non-consecutive zero elements, and a case (DAUB) where the
columns present a compact support. Note that Table I also
includes the estimation of the localization values.

Finally, in order to model possible system non-idealities,
an additional white Gaussian noise is added to each signal

TABLE I
CLASSES OF SIGNALS IN THE PROPOSED SIMULATION ENVIRONMENT.

Sparsity
basis r

Power
spectrum

profile
Lx

Localization
profile

DCT 0.58 LP 0.02 LL
DCT 0.96 LP 0.2 HL
DCT -0.58 HP 0.02 LL
DCT -0.96 HP 0.2 HL

DAUB -0.78 HP 0.013 LL
DAUB 0.97 LP 0.25 HL

instance x such that the corresponding SNR is 60 dB. This
value has to be considered as a reference asymptotic level
when discussing performance of the proposed optimization
approaches. For this reason, we set to RSNRmin = 55dB
in the computation of the PCR.

Signals reconstructions, i.e., the solution of (1), are obtained
by means of SPGL1 toolbox2.

B. CS approaches comparison
The simulation setting is designed to allow the compar-

ison of results when different class of signals in terms of
localization values, sparsity basis and power spectrum profiles
are taken into account. Performance results in terms of both
ARSNR and PCR for different values of m are considered,
comparing what is achieved by the standard non-optimized CS,
with independent and identically distributed antipodal random
matrices (S-CS) with what is achieved by using the proposed
optimization approaches. Figures 3 and 4 refer to the DCT
case, showing ARSNR and PCR, respectively. Figure 5 refers
to the DAUB case. Every point in the figures has been obtained
by 1000 Montecarlo trials, each of them considering a different
combination of input signal instance x and sensing matrix A.

In all considered cases, Rak-CS is capable of outperforming
the standard CS approach. For this reason, we consider from
now on results of the Rak-CS optimization as a benchmark to
evaluate both NeO-CS and Max-CS.

Simulations with DCT-sparse signals of Figures 3 and 4
include all four corner cases (high- and low-localization,
high- and low-pass profile). In this case, it is easy to under-
stand the behavior of the proposed optimization techniques:
independently of the high-pass or low-pass profile, when
considering lowly localized signals, the NeO-CS approach
has performance not different from the benchmark Rak-CS,
while the Max-CS provides a considerable boost. Conversely,
when considering highly localized signals, the NeO-CS is the
approach providing a considerable performance boost, while
performance of Max-CS are aligned with the benchmark.
A very similar behavior can be observed when the DAUB
sparsity basis is considered.

In conclusion it can be inferred that, when dealing with
highly localized signal, the NeO-CS is capable of exploiting all
possibilities offered by the localization thus outperforming all
other approaches, while low localized signal take advantages
by the run-time optimization offered by the Max-CS.

2online available at http://www.cs.ubc.ca/∼mpf/spgl1/
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Fig. 3. Performance comparison in terms of ARSNR between the standard CS and of the considered optimization technique for different input signals sparse
on the DCT basis where ` = 0.25 for Rak-CS, M = 512 for Max-CS and p = 0.7 for NeO-CS. (a): low-pass profile, lowly localized (LP-LL); (b): low-pass
profile, highly localized (LP-HL); (c): high-pass profile, lowly localized (HP-LL); (d): high-pass profile, highly localized (HP-HL).

1

10 30 50 70

0.2

0.4

0.6

0.8

1

m

PC
R

(a) LP - LL

10 30 50 70

0.2

0.4

0.6

0.8

1

m

PC
R

(b) LP - HL

10 30 50 70

0.2

0.4

0.6

0.8

1

m

PC
R

(c) HP - LL

10 30 50 70

0.2

0.4

0.6

0.8

1

m

PC
R

(d) HP - HL

S-CS Rak-CS NeO-CS Max-CS

Fig. 4. Performance comparison in terms of PCR between the standard CS and of the considered optimization technique for different input signals sparse
on the DCT basis where ` = 0.25 for Rak-CS, M = 512 for Max-CS and p = 0.7 for NeO-CS. (a): low-pass profile, lowly localized (LP-LL); (b): low-pass
profile, highly localized (LP-HL); (c): high-pass profile, lowly localized (HP-LL); (d): high-pass profile, highly localized (HP-HL).
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Fig. 6. Neo-CS performance in terms of ARSNR as a function of p for LP-
HL signals sparse on DCT. The highlighted vertical line refer to performances
shown in Figure 3(b).

C. NeO-CS performances

In the examples of Figures 3, 4 and 5 the threshold θ is
such that p = 0.7. It may be interesting to determine how
performance changes according to p.

This can be seen in Figure 6, showing the ARSNR as a
function of p in the case of LP-HL signals sparse on DCT, with
m = 16 and m = 32. The value p = 0.7 has been highlighted
to allow a better identification of the working point used in
Figure 3(b) (both figures refer to the same class of signals).
As expected, the stronger the condition on the minimum angle
(i.e., the lower p), the better the performance. The price to pay
for increased performance is that generating A is more difficult

due to the low value of p.
As noted in the previous section, the difficulty of imposing

a minimum angle between each couple of rows of A is also
strongly increasing with m. Although sensing sequences are
off-line computed and locally stored in the device performing
compression, this increase in complexity could not be balanced
by a sufficient increase in performance. For m = 32, the
difference in performance is small, while when m = 16
the difference is large and decreasing p is certainly worth.
A motivation behind this phenomena can be found in how
the sensing matrix is able to span the signal space. Although
we use localized sequences, increasing m correspond to an
increase in the ability of the encoder to capture the information
content of x such that the increasing in the minimum angle
required between the rows of A is less effective.

To prove the effectiveness of NeO-CS approach we consider
also performance related to the acquisition and reconstruction
of a real-life signal as an electrocardiogram (ECG). In partic-
ular an ECG track is generated according to [37] with same
setting used in [17] where sampling rate is 256Hz and the
heart rate ranging from 40 to 80 bpm. Signal instances are
also perturbed by a white additive Gaussian noise with a 50 dB
SNR to emulate non-idealities as quantization.

Since the ECG is known to be a HL signal [31], according
to the synthetic example of Section IV-B, we expect that
NeO-CS would outperform both standard CS and Rak-CS.
With 1 second windows (n = 256) and the Symlet-6 wavelet
transformation as sparsity basis, results in terms of ARSNR
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Fig. 8. Max-CS performance in terms of ARSNR as a function of M for HP-
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shown in Figure 3(c).

as a function of m are shown in Fig. 7 for S-CS, Rak-CS
(with ` = 0.5) and NeO-CS (with p = 0.7). Simulation results
confirm that NeO-CS strongly outperforms S-CS while the
introduced advantage with respect to Rak-CS decrease whem
m increase.

D. Max-CS performances

When focusing on Max-CS approach, the role of M must be
discussed. The idea to select m sequences over M candidates
implies that an increase in M corresponds to an increase in the
probability to select the rows of A properly aligned with the
actual signal instance, thus increasing performance. However,1
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Fig. 9. Max-CS performance in terms of ARSNR as a function of CRbit for
HP-LL signals sparse on DCT including Rak-CS performance as reference.

increasing M implies that bJ̃ in (13) also increases implying
a tighter a trade-off.

Figure 8 shows the impact of M in the ARSNR for two
different m values in the reconstruction of HP-LL signals
sparse on DCT. In the figure the value of M used in Figure 3(c)
has been highlighted. Remarkably, performance saturates for
large values of M and, considering the impact of M on the
total amount of information transmitted from the encoder to
the decoder, an optimum value can be found.

In the adopted simulation setting, each x instance has been
perturbed by a white Gaussian noise with a corresponding
signal-to-noise ratio equal to 60 dB to emulate non-idealities
of the sensing stage. This can be approximated as 10 bit
quantization noise, so bx in (13) can be set to 10. To encode
the measurement vector we adopt the conservative choice
by = d1/2 log2(n)e = 14 as suggested in [38] that does not
implies the re-quantizzation of y. In this setting, Figures 9
shows the performance in terms of ARSNR as a function of
CRbit for three different values of M and for the Rak-CS as
reference. Results confirm the discussed trade-off by showing
how, in this case, the intermediate value M = 512 is able to
outperform higher or lower considered values.

Max-CS has also been tested on image reconstructions task.
Without any limitation to a particular class of images, i.e.,
without focusing on specific cases such as, f.i., Magnetic
Resonance Imaging or Barcode images, it is not possible to
estimate the statistic of the acquired class of signals. In this
scenario both Rak-CS and NeO-CS cannot be applied, while
Max-CS is expected to provide a performance improvement
with respect to S-CS.

As test image X (8-bit 256× 256 pixels) we used the gray
scale version of the pears image from the Matlab demo images
repository of the image processing toolbox. X has been par-
titioned into 16× 16 blocks x (n = 256), and reconstructions
were preformed by the 16× 16 Daubechies-8 Wavelet as 2D
sparsity basis. After that, the N ×N reconstructed images X̃
(with N = 256) were compared with the original picture for
different values of m and M . To evaluate the reconstruction
quality, as common in this field, we use the average observed
value of the mean square error (MSE), defined as

MSE =
1

N2

N∑
i=1

N∑
j=1

(
Xi,j − X̃i,j

)2
L2

where L is the maximum value that each Xi,j can assume.
This allows us to get a MSE value independent of the gray-
scale encoding type. Note that, differently from the SNR case,
lower values correspond to a higher quality.

Results are reported in Fig. 10 as a function of the achieved
CRbit, i.e., taken into account the overhead given by the
coding of J̃ in the Max-CS approach as in (13). The advantage
of the Max-CS is clear also in this case. However, note that
performance is almost aligned with that of the standard CS
for high quality reconstructions, revealing how in this case the
advantage of the Max-CS is significant only when low-quality
reconstruction are tolerable in the specific application.
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in the decoding of the considered test image.

E. Algorithms complexity

According to results in Sec. IV, Max-CS and NeO-CS
are able to reduce the number of digital words needed to
correctly reconstruct each input signal window with respect
to the standard CS approach (and, consequently, also to a
classical Nyquist-based system) by a quantity that depends
on the actual class of input signals. So, energy requirements
for measurements dispatch are relaxed. Yet, as anticipated
in Sec. III, this may come at additional cost in terms of
memory footprint and/or computational complexity for either
generating sensing matrices or computing measurements.

The aim of this section is to give additional details on a
possible comparison between the computational costs of the
proposed techniques using standard CS as reference case. We
evaluate both space and time complexities using test signals
generated according to the setting described in Section IV-A.
In particular, and referring to Table I, we use the DCT LP-LL
and the DCT LP-HL cases, considering ` = 0.25 for Rak-CS,
M = 512 for Max-CS and p = 0.7 for NeO-CS. The value of
m is the smallest one ensuring ARSNR ≥ 60 dB.

Two different contributions are computed: i- the cost of
generating/memorizing the sensing matrix A; ii- the cost for
computing the measurements vector y. The reason is that the
cost for the generation of A needs to be considered only if
a different A is generated for each time window, while this
cost is negligible if A is fixed, and therefore generated on-
line or pre-computed only once. In the latter case, the memory
required to store A is the most important figure of merit. Costs
for sensing matrix generation/storage are reported in Table II.
Space complexity refers to the amount of memory required to
store A, while time complexity to the amount of CPU time
required to generate it and has been estimated as the execution
time of Matlab code on a standard PC. Both space and time
complexities have been normalized with respect to the value
required by the standard CS case. As expected, in the NeO-CS
approach the time complexity of generating A is the highest
one, but the space complexity (in particular in the HL case) is
the lowest one. Conversely, the space complexity for the Max-
CS is always the highest one due to the need of memorizing
the Ã matrix.

Costs for measurements computation in terms of normalized
time complexity are reported in Table III. In this case, the
lower the m, the faster the measurements computation, except

TABLE II
SENSING MATRICES GENERATION/STORAGE COMPARISONS IN TERMS OF

NORMALIZED SPACE AND TIME COMPLEXITY OF RAK-CS (` = 0.25),
NEO-CS (p = 0.7) AND MAX-CS (M = 512) WITH RESPECT TO S-CS.

INPUT SIGNALS ARE LP AND SPARSE ON DCT BASIS, WITH m ENSURING
ARSNR ≥ 60 dB.

S-CS Rak-CS NeO-CS Max-CS

LL
min
m

(ARSNR ≥ 60 dB) 59 37 39 22

normal. space complexity 1 0.63 0.66 8.7
normal. time complexity 1 3.3 720 15

HL
min
m

(ARSNR ≥ 60 dB) 59 29 18 31

normal. space complexity 1 0.49 0.31 8.7
normal. time complexity 1 2.6 37 15

TABLE III
MEASUREMENTS EVALUATION COMPARISONS IN TERMS OF NORMALIZED

TIME COMPLEXITY OF RAK-CS (` = 0.25), NEO-CS (p = 0.7) AND
MAX-CS (M = 512) WITH RESPECT TO S-CS. INPUT SIGNALS ARE LP

SPARSE ON DCT BASIS, WITH m ENSURING ARSNR ≥ 60 dB.

S-CS Rak-CS NeO-CS Max-CS

LL min
m

(ARSNR ≥ 60 dB) 59 37 39 22

normal. time complexity 1 0.88 0.88 1.42

HL min
m

(ARSNR ≥ 60 dB) 59 29 18 31

normal. time complexity 1 0.84 0.78 1.42

for the case of the Max-CS that presents a higher complexity
mainly due to both the pre-computation of M candidates for
y and the additional sorting step required to select the m
measurements.

V. CONCLUSION

Two new sensing matrix optimization techniques are pro-
posed with the aim of increasing compressed sensing perfor-
mance. The first one (named Nearly-Orthogonal CS) exploits
a geometrical constraint on the rows of the sensing matrix,
while the second one (Maximum-Energy CS) is based on a
run-time screening of the compressed measurements.

By means of intensive numerical simulation, performance of
the proposed approaches has been compared with a benchmark
given by the rakeness optimization technique. Furthermore,
different classes of signal have been tested, in order to inves-
tigate the applications for which the proposed methods achieve
better results.

Results shows that, when the input signal is highly localized,
the Nearly-Orthogonal CS is capable to achieve much better
results with respect to the benchmark. Conversely, if the
input signal is lowly localized, it is possible to get much
better results with respect to the state-of-the-art by using the
Maximum-Energy CS approach.
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