Abstract: The Kuramoto model is a paradigm to describe the dynamics of nonlinear oscillators under the influence of external perturbations or couplings. It is based on the idea to reduce the state equations to a scalar differential equation, that defines the time evolution for the phase of the oscillator. In this paper we discuss the reduction procedure for nonlinear oscillators subject to stochastic perturbations. The result is that phase noise is a drift-diffusion process. It is shown that the unavoidable amplitude fluctuations do change the expected frequency, and the frequency shift depends on the amplitude variance. The theoretical results are illustrated with the help of an example.

Kuramoto-like model of noisy oscillators / Bonnin, Michele; Bonani, Fabrizio; Traversa, F. L.. - STAMPA. - (2017), pp. 1-4. ((Intervento presentato al convegno 2017 European Conference on Circuit Theory and Design (ECCTD) tenutosi a Catania, Italy nel 4-6 September 2017 [10.1109/ECCTD.2017.8093299].

Kuramoto-like model of noisy oscillators

BONNIN, MICHELE;BONANI, FABRIZIO;Traversa, F. L.
2017

Abstract

Abstract: The Kuramoto model is a paradigm to describe the dynamics of nonlinear oscillators under the influence of external perturbations or couplings. It is based on the idea to reduce the state equations to a scalar differential equation, that defines the time evolution for the phase of the oscillator. In this paper we discuss the reduction procedure for nonlinear oscillators subject to stochastic perturbations. The result is that phase noise is a drift-diffusion process. It is shown that the unavoidable amplitude fluctuations do change the expected frequency, and the frequency shift depends on the amplitude variance. The theoretical results are illustrated with the help of an example.
978-1-5386-3975-7
File in questo prodotto:
File Dimensione Formato  
ECCTD 17 Kuramoto.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 152.43 kB
Formato Adobe PDF
152.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2689171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo