The physical and mechanical properties of advanced composite materials promote their application in structural components for the aerospace and automotive sectors. However, limitations in their machinability are due to anisotropy/inhomogeneity, poor plastic deformation, and abrasive behavior. For CFRP drilling, the process efficiency is heavily influenced by cutting conditions and tool geometry. This paper reports the outcomes of experimental diamond drilling tests. A 4-mm thick carbon-epoxy composite laminate was machined. The plate was made of ten layers, in which the carbon fibers were intertwined at 90°. 6-mm diameter core drills were used. Core drills were characterized by an electroplated bond type and an AC32-H diamond grain type. Four different tool grit size ranges were tested: (1) 63/53 μm, (2) 125/106 μm, (3) 212/180 μm, and (4) 212/180 plus 63/53 μm. The results are reported in terms of workpiece delamination, thrust force, torque, and chip morphology. Overall, the results allow identifying the cutting conditions for the minimum drilling-induced delamination while retaining a satisfactory process productivity.

Diamond drilling of Carbon Fiber Reinforced Polymers: Influence of tool grit size and process parameters on workpiece delamination / Priarone, PAOLO CLAUDIO; Robiglio, Matteo; Melentiev, Ruslan; Settineri, Luca. - ELETTRONICO. - 66:(2017), pp. 181-186. (Intervento presentato al convegno 1st CIRP Conference on Composite Materials Parts Manufacturing tenutosi a Karlsruhe, Germany nel 8-9 Giugno 2017) [10.1016/j.procir.2017.03.296].

Diamond drilling of Carbon Fiber Reinforced Polymers: Influence of tool grit size and process parameters on workpiece delamination

PRIARONE, PAOLO CLAUDIO;ROBIGLIO, MATTEO;SETTINERI, Luca
2017

Abstract

The physical and mechanical properties of advanced composite materials promote their application in structural components for the aerospace and automotive sectors. However, limitations in their machinability are due to anisotropy/inhomogeneity, poor plastic deformation, and abrasive behavior. For CFRP drilling, the process efficiency is heavily influenced by cutting conditions and tool geometry. This paper reports the outcomes of experimental diamond drilling tests. A 4-mm thick carbon-epoxy composite laminate was machined. The plate was made of ten layers, in which the carbon fibers were intertwined at 90°. 6-mm diameter core drills were used. Core drills were characterized by an electroplated bond type and an AC32-H diamond grain type. Four different tool grit size ranges were tested: (1) 63/53 μm, (2) 125/106 μm, (3) 212/180 μm, and (4) 212/180 plus 63/53 μm. The results are reported in terms of workpiece delamination, thrust force, torque, and chip morphology. Overall, the results allow identifying the cutting conditions for the minimum drilling-induced delamination while retaining a satisfactory process productivity.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2671518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo