FPGA-based accelerators have recently evolved as strong competitors to the traditional GPU-based accelerators in modern high-performance computing systems. They offer both high computational capabilities and considerably lower energy consumption. High-level synthesis (HLS) can be used to overcome the main hurdle in the mainstream usage of the FPGA-based accelerators, i.e., the complexity of their design flow. HLS enables the designers to program an FPGA directly by using high-level languages, e.g., C, C++, SystemC, and OpenCL. This paper presents an HLS-based FPGA implementation of several algorithms from a variety of application domains. A performance comparison in terms of execution time, energy, and power consumption with some high-end GPUs is performed as well. The algorithms have been modeled in OpenCL for both GPU and FPGA implementation. We conclude that FPGAs are much more energy-efficient than GPUs in all the test cases that we considered. Moreover, FPGAs can sometimes be faster than GPUs by using an FPGA-specific OpenCL programming style and utilizing a variety of appropriate HLS directives.

Efficient FPGA Implementation of OpenCL High-Performance Computing Applications via High-Level Synthesis / Muslim, Fahad Bin; Ma, Liang; Roozmeh, Mehdi; Lavagno, Luciano. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 5:(2017), pp. 2747-2762. [10.1109/ACCESS.2017.2671881]

Efficient FPGA Implementation of OpenCL High-Performance Computing Applications via High-Level Synthesis

MA, LIANG;ROOZMEH, MEHDI;LAVAGNO, Luciano
2017

Abstract

FPGA-based accelerators have recently evolved as strong competitors to the traditional GPU-based accelerators in modern high-performance computing systems. They offer both high computational capabilities and considerably lower energy consumption. High-level synthesis (HLS) can be used to overcome the main hurdle in the mainstream usage of the FPGA-based accelerators, i.e., the complexity of their design flow. HLS enables the designers to program an FPGA directly by using high-level languages, e.g., C, C++, SystemC, and OpenCL. This paper presents an HLS-based FPGA implementation of several algorithms from a variety of application domains. A performance comparison in terms of execution time, energy, and power consumption with some high-end GPUs is performed as well. The algorithms have been modeled in OpenCL for both GPU and FPGA implementation. We conclude that FPGAs are much more energy-efficient than GPUs in all the test cases that we considered. Moreover, FPGAs can sometimes be faster than GPUs by using an FPGA-specific OpenCL programming style and utilizing a variety of appropriate HLS directives.
2017
File in questo prodotto:
File Dimensione Formato  
07859319.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 5.05 MB
Formato Adobe PDF
5.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2669854
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo