A multifiltration is a functor indexed by N^r that maps any morphism to a monomorphism. The goal of this paper is to describe in an explicit and combinatorial way the natural N^r-graded R[x_1,...,x_r]-module structure on the homology of a multifiltration of simplicial complexes. To do that we study multifiltrations of sets and R-modules. We prove in particular that the N^r-graded R[x_1,...,x_r]-modules that can occur as R-spans of multifiltrations of sets are the direct sums of monomial ideals.
Combinatorial presentation of multidimensional persistent homology / Chacholski, W.; Scolamiero, Martina; Vaccarino, Francesco. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - STAMPA. - (2017). [10.1016/j.jpaa.2016.09.001]
Combinatorial presentation of multidimensional persistent homology
SCOLAMIERO, MARTINA;VACCARINO, FRANCESCO
2017
Abstract
A multifiltration is a functor indexed by N^r that maps any morphism to a monomorphism. The goal of this paper is to describe in an explicit and combinatorial way the natural N^r-graded R[x_1,...,x_r]-module structure on the homology of a multifiltration of simplicial complexes. To do that we study multifiltrations of sets and R-modules. We prove in particular that the N^r-graded R[x_1,...,x_r]-modules that can occur as R-spans of multifiltrations of sets are the direct sums of monomial ideals.File | Dimensione | Formato | |
---|---|---|---|
Submission_8_2_2016.pdf
Open Access dal 01/10/2018
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
493.16 kB
Formato
Adobe PDF
|
493.16 kB | Adobe PDF | Visualizza/Apri |
1409.7936v1.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
554.23 kB
Formato
Adobe PDF
|
554.23 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022404916301475-main (1).pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
541.25 kB
Formato
Adobe PDF
|
541.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2651578
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo