Bootstrap percolation is a well-known activation process in a graph, in which a node becomes active when it has at least $r$ active neighbors. Such process, originally studied on regular structures, has been recently investigated also in the context of random graphs, where it can serve as a simple model for a wide variety of cascades, such as the spreading of ideas, trends, viral contents, etc. over large social networks. In particular, it has been shown that in $G(n,p)$ the final active set can exhibit a phase transition for a sub-linear number of seeds. In this paper, we propose a unique framework to study similar sub-linear phase transitions for a much broader class of graph models and epidemic processes. Specifically, we consider i) a generalized version of bootstrap percolation in $G(n,p)$ with random activation thresholds and random node-to-node influences; ii) different random graph models, including graphs with given degree sequence and graphs with community structure (block model). The common thread of our work is to show the surprising sensitivity of the critical seed set size to extreme values of distributions, which makes some systems dramatically vulnerable to large-scale outbreaks. We validate our results running simulation on both synthetic and real graphs.
Generalized Threshold-Based Epidemics in Random Graphs: the Power of Extreme Values / Michele, Garetto; Leonardi, Emilio; Giovanni Luca, Torrisi. - ELETTRONICO. - (2016), pp. 37-50. (Intervento presentato al convegno ACM sigmetrics 2016 tenutosi a Juan Le Pin - Antibes (France) nel June 2016) [10.1145/2896377.2901455].
Generalized Threshold-Based Epidemics in Random Graphs: the Power of Extreme Values
LEONARDI, Emilio;
2016
Abstract
Bootstrap percolation is a well-known activation process in a graph, in which a node becomes active when it has at least $r$ active neighbors. Such process, originally studied on regular structures, has been recently investigated also in the context of random graphs, where it can serve as a simple model for a wide variety of cascades, such as the spreading of ideas, trends, viral contents, etc. over large social networks. In particular, it has been shown that in $G(n,p)$ the final active set can exhibit a phase transition for a sub-linear number of seeds. In this paper, we propose a unique framework to study similar sub-linear phase transitions for a much broader class of graph models and epidemic processes. Specifically, we consider i) a generalized version of bootstrap percolation in $G(n,p)$ with random activation thresholds and random node-to-node influences; ii) different random graph models, including graphs with given degree sequence and graphs with community structure (block model). The common thread of our work is to show the surprising sensitivity of the critical seed set size to extreme values of distributions, which makes some systems dramatically vulnerable to large-scale outbreaks. We validate our results running simulation on both synthetic and real graphs.File | Dimensione | Formato | |
---|---|---|---|
Arxiv.pdf
accesso aperto
Descrizione: pre print
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
503.93 kB
Formato
Adobe PDF
|
503.93 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2645231
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo