Email Print Request Permissions Standard video coding systems currently employed in UAV (Unmanned Aerial Vehicle) and aerial drone applications do not rely on some peculiarities in terms of scene 3D model and correlation among successive frames. In particular, the observed scene is static, i.e. the camera movement is dominant, and it can often be well approximated with a plane. Moreover, camera position and orientation can be obtained from the navigation system. Therefore, correspondent points on two video frames are linked by a simple homography. This paper presents novel results obtained by a low-complexity sensor aided H.264 encoder, recently developed at CIRA and yet tested on simulated data. The proposed encoder employs a new motion estimation scheme which make use of the global motion information provided by the onboard navigation system. The homography is used in order to initialize the block matching algorithm allowing a more robust motion estimation and a smaller search window, and hence reducing the complexity. The tests are made coding real aerial imagery, captured to be used for 3D scene reconstruction. The images are acquired by an high resolution camera mounted on a small drone, flying at low altitude.

A sensor aided H.264 encoder tested on aerial imagery for SFM / Angelino, C. V.; Cicala, L.; Persechino, G.; Baccaglini, Enrico; Gavelli, M.; Raimondo, Nadir. - ELETTRONICO. - (2014), pp. 1194-1197. ((Intervento presentato al convegno IEEE International Conference on Image Processing, ICIP 2014 tenutosi a Paris nel 27-30 Oct. 2014 [10.1109/ICIP.2014.7025238].

A sensor aided H.264 encoder tested on aerial imagery for SFM

BACCAGLINI, ENRICO;RAIMONDO, NADIR
2014

Abstract

Email Print Request Permissions Standard video coding systems currently employed in UAV (Unmanned Aerial Vehicle) and aerial drone applications do not rely on some peculiarities in terms of scene 3D model and correlation among successive frames. In particular, the observed scene is static, i.e. the camera movement is dominant, and it can often be well approximated with a plane. Moreover, camera position and orientation can be obtained from the navigation system. Therefore, correspondent points on two video frames are linked by a simple homography. This paper presents novel results obtained by a low-complexity sensor aided H.264 encoder, recently developed at CIRA and yet tested on simulated data. The proposed encoder employs a new motion estimation scheme which make use of the global motion information provided by the onboard navigation system. The homography is used in order to initialize the block matching algorithm allowing a more robust motion estimation and a smaller search window, and hence reducing the complexity. The tests are made coding real aerial imagery, captured to be used for 3D scene reconstruction. The images are acquired by an high resolution camera mounted on a small drone, flying at low altitude.
9781479957514
9781479957514
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2645089
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo