Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.

Persistent homology analysis of phase transitions / Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; Nigris, Sarah De; Franzosi, Roberto; Vaccarino, Francesco. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - STAMPA. - 93:5(2016). [10.1103/PhysRevE.93.052138]

Persistent homology analysis of phase transitions

VACCARINO, FRANCESCO
2016

Abstract

Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.
File in questo prodotto:
File Dimensione Formato  
1601.03641.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 893.52 kB
Formato Adobe PDF
893.52 kB Adobe PDF Visualizza/Apri
PhysRevE.93.052138.pdf

Open Access dal 21/05/2017

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2642726
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo