Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.
Persistent homology analysis of phase transitions / Donato, Irene; Gori, Matteo; Pettini, Marco; Petri, Giovanni; Nigris, Sarah De; Franzosi, Roberto; Vaccarino, Francesco. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - STAMPA. - 93:5(2016). [10.1103/PhysRevE.93.052138]
Persistent homology analysis of phase transitions
VACCARINO, FRANCESCO
2016
Abstract
Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called mean-field XY model and by the ϕ4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.File | Dimensione | Formato | |
---|---|---|---|
1601.03641.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
893.52 kB
Formato
Adobe PDF
|
893.52 kB | Adobe PDF | Visualizza/Apri |
PhysRevE.93.052138.pdf
Open Access dal 21/05/2017
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2642726
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo