In this paper we introduce a least squares estimator of the regression coefficients of an autoregressive process acquired by means of Compressed Sensing (CS). Unlike common CS problems in which we only know that the signal is sparse, using the proposed autoregressive model we can gain knowledge about the structure of the original signal without recovering it. This problem is addressed by introducing an ad-hoc sensing matrix able to preserve the structure of the regression. We numerically validate the performance of this matrix. Moreover, we present applications that naturally exploit this additional information we can directly obtain from the compressed data, and particularly power spectral density estimation from CS measurements.

Autoregressive Process Parameter Estimation from Compressed Sensing Measurements / Testa, Matteo; Magli, Enrico. - STAMPA. - (2015), pp. 488-492. (Intervento presentato al convegno 2015 49th Asilomar Conference on Signals, Systems and Computers nel 2015) [10.1109/ACSSC.2015.7421176].

Autoregressive Process Parameter Estimation from Compressed Sensing Measurements

TESTA, MATTEO;MAGLI, ENRICO
2015

Abstract

In this paper we introduce a least squares estimator of the regression coefficients of an autoregressive process acquired by means of Compressed Sensing (CS). Unlike common CS problems in which we only know that the signal is sparse, using the proposed autoregressive model we can gain knowledge about the structure of the original signal without recovering it. This problem is addressed by introducing an ad-hoc sensing matrix able to preserve the structure of the regression. We numerically validate the performance of this matrix. Moreover, we present applications that naturally exploit this additional information we can directly obtain from the compressed data, and particularly power spectral density estimation from CS measurements.
File in questo prodotto:
File Dimensione Formato  
asilomar_compressive.pdf

accesso aperto

Descrizione: postprint - author version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 136.54 kB
Formato Adobe PDF
136.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2638900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo