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Autoregressive Process Parameter Estimation from
Compressed Sensing Measurements

Matteo Testa and Enrico Magli
Department of Electronics and Telecommunications — Politecnico di Torino (Italy)

Abstract—In this paper we introduce a least squares estimator
of the regression coefficients of an autoregressive process acquired
by means of Compressed Sensing (CS). Unlike common CS
problems in which we only know that the signal is sparse, using
the proposed autoregressive model we can gain knowledge about
the structure of the original signal without recovering it. This
problem is addressed by introducing an ad-hoc sensing matrix
able to preserve the structure of the regression. We numerically
validate the performance of this matrix. Moreover, we present
applications that naturally exploit this additional information we
can directly obtain from the compressed data, and particularly
power spectral density estimation from CS measurements.

Keywords—Compressed Sensing, Autoregressive process, com-
pressibility, parameter estimation.

I. INTRODUCTION

Compressed Sensing (CS) [1] [2] is a new paradigm in
which the signal acquisition and compression collapse into a
single operation. The biggest advantage of CS is the ability to
sense a signal at a lower rate than the classical Nyquist rate.
CS recovery relies on the fact that the acquired signal must be
sparse in some domain. This assumption plays then a central
role in the recovery process since it is the foundation which
allows to guarantee the exact recover of the original signal with
overwhelming probability. However, this operation is generally
expensive in terms of required computational power and, if
only few parameters are needed, is preferred to infer them
from the compressed measurements.

In many CS applications, once the compressed measure-
ments have been obtained, no knowledge about the nature of
the compressed signal is available, except for the assumption
that it is sparse in some domain. However, natural signals
are typically not exactly sparse, but rather approximately
sparse or “compressible”. In many cases, such compressibility
implies that the signal spectrum is decreasing [3]. This kind
of information on the signal structure has indeed been used to
improve the CS reconstruction [4].

In this paper we are interested in a more general model
to understand the underlying structure of the compressed
signal. The goal is hence not only to improve the recovery
process, but also to gain knowledge on the signal structure by
means of few inferred parameters. Such structure can then be
used e.g. to perform signal processing operations directly in
the compressed domain [5] [6], such as detection, parameter
estimation, filtering, and so on.
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In this paper we propose to model the structure of the
sensed signal using an autoregressive (AR) process. The rea-
sons are twofold: the first is related to its good approximation
of real processes since this model is suited to efficiently repre-
sent signals with a natural spectrum. The other is that, since it
is a parametric model, few coefficients are expected to suffice
to characterize the signal nature. This latter reason has great
importance for all the settings in which the communication cost
must be kept low and hence it is worth to transmit only few
parameters instead of the signal, even though it is compressed.

Although to the best of our knowledge there are no papers
in literature dealing with the estimation of AR parameters
from compressed sensing measurements, there are a few papers
addressing the recovery of “compressed” AR(p) processes.
The common basic assumption is that the driving process of
the AR(p) model must be sparse. In [7] the authors estimate
the regression coefficients before performing any compressed
sensing, and then use them later as a way to construct a spar-
sifying basis in order to recover the signal. Another technique
is proposed in [8] where, using a circulant sensing matrix and
exploiting its convolution property, the authors first recovery
the AR process, and then estimate its parameters. The same
authors, in a later paper [9], introduce a functional in which
the regression coefficients are estimated along with the driving
process, resulting in a modified LASSO for signal recovery.

Unlike previous works, this paper addresses the problem of
the standalone estimation of the underlying signal structure (in
terms of AR coefficients) directly from its CS measurements.
In this paper, to reach the goal we introduce a new design
for sensing matrices which, along with the least-squares (LS)
estimator we propose, allows to estimate the coefficients of the
uncompressed AR signal starting from its CS measurements.
Moreover, we present two applications exploiting the estimated
regression coefficients: the first one is an improved recovery
which takes advantage of the estimated model parameters,
the latter one is the spectral estimation of a signal from its
compressed measurements. We also show that, given only
the CS measurements with no additional information, the
improved recovery we propose outperforms other existing
techniques lowering the recovery MSE up to —7dB.

II. BACKGROUND
A. Compressed Sensing

CS allows to exactly recover a sparse signal given a small
number of its random projections. Let v € R be a sparse
signal (i.e., it has a number of non-zero entries s < N),
and & € RM*N with M < N be the sensing matrix.
Then, given y = ®v € RM, v can be exactly recovered



with overwhelming probability. However, most signals are not
sparse in the domain of acquisition and hence it is necessary
to introduce a sparsifying basis ¥ € RY*Y_ The compressed
sensing acquisition model can be then written as y = ®WUv.
A possible way to recover the signal is through the LASSO,
defined as

arg min Al|v[l1+(jy — @Wo|[2.

B. Autoregressive processes

An AR process of order p is a parametric model able to
describe the time-varying nature of a process in which the
output values linearly depend on their previous values. More
formally

p
Ty = Zl’t—z'ai + uy, (D
i=1

where u is called driving process and a; are the coefficients of
the regression. In other words, it can be seen as a filtering op-
eration over a process v with an all-pole filter with coefficients
givenby a=[a1 ... a; ... ap] .

III. COMPRESSED LEAST SQUARES ESTIMATION OF AR
COEFFICIENTS

The main goal of this paper is to estimate the coefficients of
an AR(p) process directly from the compressed measurements.
In order to reach the goal, among the different classes of the
estimators of the AR coefficients available in literature, we
focus on the LS estimator. In fact, this choice, along with a new
sensing matrix design we introduce (with excellent recovery
performances as shown in Sec. V), allow us to explicitly infer
the regression coefficients.

Let us start by introducing some notation and an LS
estimator for the uncompressed domain. Given an AR(p)
process € RV, we define 21 as a subset of & composed
by its samples with index from (p + 1) to N. Let us also
define the matrix X € R(N=P)*P constructed in the following
way

Tp Tp—1 PN T
p+1 P 2
X = ) .- ()
TN-1 TN-2 TN—p

Since by (1) we obtain
2t = Xa, 3)

we can hence write an LS estimator for the parameters of a
process as the minimizer of the following functional

argminfzt — Xal|o 4)

or, more concisely, as a = Xzt where “1” denotes the
pseudo-inverse.

In order to have an analogous LS estimator for the com-
pressed domain we need to introduce a sensing matrix able to
preserve the structure of the regression. As we can see from
(2), the LS estimator for a process of order p, needs p + 1
shifted versions of the input signal. Hence, the idea is to build

a sensing matrix from which, given the output measurements,
is possible to extract the compressed p + 1 shifted versions of
z. This means that the sensing matrix should be made of p+1
sub-blocks ®’ where each of them senses a shifted version of
the given signal z.

Then, if we use (3), multiplying both sides by the sensing
block @' we get
y" =Ya, 5)

where 4y = ®'2% and Y = ®’'X. Hence, if the sensing matrix
is made up of shifted sensing blocks it is possible to extract
the quantities y* and Y from the measurement vector y.

More formally, let us assume that the main block @' €
R#*(N=P) with = M/ (p+ 1), has entries distributed
according to ¢}, ~ N(0,+;). Then, the proposed sensing
matrix ® € RM*N is made of p + 1 circulant blocks of &’
as depicted in Fig. 1. In Sec. V we will show that this matrix
has very good properties for CS reconstruction.
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Fig. 1. Circulant blocks structure of ®.

In order to obtain the measurements of shifted versions of
the original signal (which are needed to obtain y* and Y),
we exploit the structure of the sensing matrix in Fig. 1. As
can be seen, each sub-block acquires a shifted version of the
input signal through the sub-sensing matrix ®’. Hence we can
write Y14 p(k—1)—kp = P Tp(N—p+k—1), Which means that
the vector y is made of p+ 1 blocks of length p which are the
measurements corresponding to different shifts of x.

In particular, using (5) we define the compressed LS
estimator for AR(p) coefficients, as:

arg minfly™ — Yal, ©6)

where the chosen M must be an integer multiple of p+ 1. The
performance of this estimator is validated in Sec. V.

It is worth noting that the proposed estimator, working
directly in the reduced space of the measurements domain,
is computationally less demanding with respect to the corre-
sponding LS estimator (4) in the uncompressed domain. The
complexity strictly depends on the value of p and the length of
signal N according to O(p?(N—p)), where the most influential
term is N because the order of the process is tipycally small.
Therefore, the required computational power for the proposed
estimator drastically reduces to O(p?u) with u < (N — p).

IV. APPLICATIONS

A. Sparsely-driven AR process recovery

As previously discussed, gaining knowledge of the under-
lying signal structure can improve the CS recovery process: in
fact the proposed estimator allows to recover a compressively



sensed AR(p) process under some sparsity assumptions. In this
section we consider a process obtained by filtering a sparse
driving process. This model is of interest in speech processing,
since the speech signal can be modeled as an AR process
where the residual (driving process of the model) is sparse as
in Multi-Pulse excitation coding [10].

To tackle this problem we need to introduce a basis able
to represent our process sparsely. Since, by assumption, the
driving noise of AR(p) process is sparse, our sparsifying basis
will be that filtering matrix which reverses the AR(p) filtering
effect.

Given the AR(p) process = and the sparse driving process
u, we can write u = Az, where A is the matrix performing
the inverse filtering operation on z, i.e, the lower-triangular
Toeplitz matrix created from the length-N vector [1a' 0 ... 0].
Then, the basis we are looking for is H £ AL

When considering the compressed measurements we can
equivalently write y = ®x = ®Hwu, which leads to the
following LASSO problem for the AR(p) recovery:

argminlly — ®Hull2+Al|ull1, @)

where H is the sparsifying basis constructed from the estimate
of a in the CS domain. It is worth noting that using the
proposed estimator along with the LASSO in (7) to improve
the signal recovery only requires the CS measurements and
hence no side informations or training data must be known.

B. Compressive spectral estimation

Signal recovery in CS is in general a computationally
expensive task. With this in mind, there are some cases in
which, exploiting the signal structure, the recovery could be
avoided. Examples include filtering unwanted spectral com-
ponents directly in the compressed domain or discarding the
signal because the spectrum does not contains certain required
components.

It is known [11] that the Power Spectral Density (PSD)
estimate of a signal R, is related to the coefficients of the
regression according to

L
where A(w) = 1+aje ™+ - -+aye P¥. Hence, the proposed
estimator, along with the specifically designed sensing matrix
allows to use the AR parameters estimated from the CS mea-
surements to build an estimate of the PSD of the signal. As an
example, let us assume y = Pz is a signal composed by three
distinct spectral lines; if additional spectral components are
present the signal is assumed to be corrupted and its recovery
is not needed. This kind of problems is effectively solved by
the proposed framework; indeed, having an estimate of the
AR coefficients a allows to build a PSD estimate of the signal
and perform decisions prior to execute the computationally
demanding recovery step.

V. NUMERICAL EXPERIMENTS

This section is devoted to the numerical validation of the
properties of the proposed estimator and of the performances of
such estimates when used in the aforementioned applications.

A. Sensing matrix validation

In this subsection, we validate the recovery ability of
the proposed sensing matrix compared to some of the most
used ones in literature for which theoretical results on the
recovery performance exists [12] [13]. More in detail, we show
that these matrices can indeed be used as standard sensing
matrices within CS framework for generic sparse signals.
For this experiment we fix a sparsity level s = 100 and
randomly pick the support of the non-zero components. Hence,
we compared the performances of these matrices by running
1000 different Monte Carlo runs over different M values by
compressing sparse signals and then recovering them using
LASSO. The error metric is the relative recovery error defined
as ||z — &||2/||z||2 where & is the recovered signal. The results
(Fig. 2) show that recovery error of the proposed matrix is
lower bounded by the Gaussian sensing matrix and upper
bounded by the Bernoulli one. The recovery performance of
the proposed matrix is hence comparable to that of the circulant
one showing that the proposed sensing matrix is comparable
to other popular ones, and has a negligible performance loss
with respect to a Gaussian matrix.
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Fig. 2. Comparison of recovery ability of different sensing matrices using a
signal of length N = 1000, sparsity s = 100 and p = 9.

B. Sparsely-driven AR recovery

Here we simulate the recovery of a sparsely driven AR(p)
process. First, we generate a sparse synthetic signal and use
LASSO as in Sec. IV-A to recover the signal (Fig. 5). The
error metric we use for this experiment is the same as for the
sensing matrices comparison. The results are averaged over
100 different trials. In particular, we compare the proposed
method with the recovery using the Discrete Fourier Transform
(DFT) sparsifying basis, and the one proposed in [7]. It is
important to highlight that, while both the proposed and the
DFT-based recovery do not require any additional information
apart for the CS measurements, the recovery in [7] requires the
a-priori knowledge of the AR coefficients of the process. The
DFT-based recovery shows a very large error, showing that
the DFT basis is not good for sparsifying this class of signals.
Conversely, the other two methods show lower error, which
decreases as M increases. Moreover, the errors converge as
M — N because the two methods use the same sparsifying
basis, but constructed with different AR coefficients estimates
(from CS measurements and from original signal). Finally, in
Fig. 3 we show the recovery of a natural signal: a vocalized



tract of a speech signal. For this experiment, in order to run
a fair comparison, we compare the techniques which require
only the CS measurements: the DFT-based recovery and the
proposed technique. As we can see, with a small number
of measurements, the signal recovered using the proposed
method approximates the original one very well. In contrast,
the recovery assuming DFT-based sparsity is not able to
approximate the original signal accurately. In fact, the MSE
of the proposed recovery (shown in Fig. 3) is —30.46 dB
conversely to the DFT-based which is —23.4 dB.

C. Compressive spectral estimation

To evaluate the performance of the compressive spectral
estimation, we start by focusing on the performance of the
estimated AR coefficients. Indeed we study the estimation error
of the AR(p) coefficients comparing it with the LS estimator in
the uncompressed domain, namely we analyze the performance
loss deriving from working in the compressed domain. As
shown in Figure 4(a), the error, defined as |la — al|2/]|a||2,
is small and it decreases as M /N approaches 1. However, the
two estimators do not reach the same value for M/ = N. This is
due to the fact that since Y = ®’'X and &' has p = M/(p+1)
rows, the maximum value assumed by M is M = N then
uw = N/(p+ 1) will always be smaller than N. This means
that in the case of M = N, the block @’ is still a rectangular
matrix and the problem is under-determined.

Then, since there is a direct relationship between the
AR coefficients and the PSD of the signal as in (8), the
goodness of the estimated parameters can also be seen from
the PSD perspective. In Fig. 4(b) we show the comparison
between the spectrum of a signal made of three sinusoidal
components estimated using the FFT for the original signal
and the compressive spectral estimation for CS measurements.
As can be seen, the spectrum generated with the estimated
AR coefficients accurately approximates the spectrum spikes
of the original signal.
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Fig. 3. Recovery comparison of a vocalized tract of speech signal of length
N = 600 with M = 200 and p = 10. We compare the original signal with
the recovered versions made by using the DFT as a sparsifying basis, and the
LASSO in Sec. IV-A with the estimated regression coefficients.
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Fig. 4. Performance evaluation of the proposed estimator. In (a) we show
the performance loss deriving from using compressed measurements instead
of uncompressed data, in (b) we show an example of compressive spectral
estimation via estimated AR coefficients.
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Fig. 5. Relative recovery error comparison of a synthetic sparse signal with
N = 1000, and sparsity s = 100. We compare the recovery proposed
by Giacobello et al. in [7], a CS recovery assuming the sparsity to be in
the frequency domain and the proposed method with regression coefficients
estimated from the measurements.

VI. CONCLUSIONS

In this paper we proposed to model the underlying structure
of a compressively sensed signal with as an AR(p) process.
We hence derived a new sensing matrix design which along
with the proposed LS estimator allows to estimate the process
parameters directly from CS measurements.

Starting from the intuition of modeling the signal struc-



ture with an AR process, we showed that according to the
proposed setup, it is possible to extract information from the
compressed signal and in turn improve the recovery. In fact,
our experiments on synthetic and real signals showed that
the proposed technique outperforms other recovery methods
which only rely on the CS measurements without the ability
of gaining information on the signal structure.

Moreover, we also showed that the AR coefficients are not
only valuable in improving the recovery but that also very
effective per se. We indeed showed that, when considering
frequency sparse signals, the PSD of the uncompressed signal
is effectively estimated from its random projections.

Future work will move in the direction of providing theo-
retical analysis of the proposed estimator and sensing matrix.
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