We present a novel phase–amplitude model for noisy oscillators described by Itˆo stochastic differential equations. The model is completely rigorous and it holds for any value of the noise intensity. The phase and amplitude equations depend on the choice of an appropriate set of basis vectors. We show that using Floquet’s basis, a phase–amplitude description is obtained analogous to others, previously proposed. We also show how, using moment closure techniques, information on the expected angular frequency, oscillation amplitude and amplitude variance can be obtained from the phase–amplitude model without solving the equations explicitly.

Phase and amplitude dynamics of noisy oscillators described by Itô stochastic differential equations / Bonnin, Michele; Traversa, Fabio Lorenzo; Corinto, Fernando; Bonani, Fabrizio. - STAMPA. - (2015), pp. 3080-3083. ((Intervento presentato al convegno 2015 IEEE International Symposium on Circuits and Systems (ISCAS) tenutosi a Lisbon, Portugal nel 24-27 May [10.1109/ISCAS.2015.7169338].

Phase and amplitude dynamics of noisy oscillators described by Itô stochastic differential equations

BONNIN, MICHELE;TRAVERSA, Fabio Lorenzo;CORINTO, FERNANDO;BONANI, Fabrizio
2015

Abstract

We present a novel phase–amplitude model for noisy oscillators described by Itˆo stochastic differential equations. The model is completely rigorous and it holds for any value of the noise intensity. The phase and amplitude equations depend on the choice of an appropriate set of basis vectors. We show that using Floquet’s basis, a phase–amplitude description is obtained analogous to others, previously proposed. We also show how, using moment closure techniques, information on the expected angular frequency, oscillation amplitude and amplitude variance can be obtained from the phase–amplitude model without solving the equations explicitly.
978-1-4799-8391-9
File in questo prodotto:
File Dimensione Formato  
ISCAS 15.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 341.41 kB
Formato Adobe PDF
341.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2615728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo