Metasurfaces are thin metamaterial layers characterized by unusual dispersion properties of surface/guided wave and/or reflection properties of otherwise incident plane waves. At the scales intervening in their design, metasurfaces can be described through a surface impedance boundary condition. The impedance, possibly tensorial, is often �modulated,� i.e., it can vary from place to place on the surface (by design). We investigate on different integral equation formulations of the problem, with special attention to the stability properties of the resulting system matrix.

On the Numerical Simulation of Metasurfaces With Impedance Boundary Condition Integral Equations / Francavilla, MATTEO ALESSANDRO; E., Martini; S., Maci; Vecchi, Giuseppe. - In: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. - ISSN 0018-926X. - 63:(2015), pp. 2153-2161. [10.1109/TAP.2015.2407372]

On the Numerical Simulation of Metasurfaces With Impedance Boundary Condition Integral Equations

FRANCAVILLA, MATTEO ALESSANDRO;VECCHI, Giuseppe
2015

Abstract

Metasurfaces are thin metamaterial layers characterized by unusual dispersion properties of surface/guided wave and/or reflection properties of otherwise incident plane waves. At the scales intervening in their design, metasurfaces can be described through a surface impedance boundary condition. The impedance, possibly tensorial, is often �modulated,� i.e., it can vary from place to place on the surface (by design). We investigate on different integral equation formulations of the problem, with special attention to the stability properties of the resulting system matrix.
File in questo prodotto:
File Dimensione Formato  
Metasurf_FINAL.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Vecchi-Onthenumerical.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2605556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo