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On the Numerical Simulation of Metasurfaces with
Impedance Boundary Condition Integral Equations

Matteo Alessandro Francavilla,Member, IEEE, Enrica Martini,Senior Member, IEEE, Stefano
Maci, Fellow, IEEE, Giuseppe Vecchi,Fellow, IEEE

Abstract—Metasurfaces are thin metamaterial layers charac-
terized by unusual dispersion properties of surface/guided wave
and/or reflection properties of otherwise incident plane waves.
At the scales intervening in their design, metasurfaces canbe
described through a surface impedance boundary condition.The
impedance, possibly tensorial, is often ”modulated” i.e. it can
vary from place to place on the surface (by design). We investigate
on different integral equation formulations of the problem, with
special attention to the stability properties of the resulting system
matrix.

Index Terms—Metasurfaces, Moment methods (MoM), integral
equations, impedance boundary condition (IBC), anisotropic
surface impedance.

I. I NTRODUCTION

In recent years metamaterials have inspired several appli-
cations in designing antennas and microwave components,
thanks to the possibility of achieving electromagnetic proper-
ties impossible to find in nature. Metasurfaces are thin meta-
material layers characterized by unusual reflection properties
of plane waves and/or dispersion properties of surface/guided
waves [1], [2]. Metasurfaces can be realized at microwave
frequencies by printing a dense periodic texture of small
elements on a grounded slab, with or without shorting vias;
in the following, we will refer with the term metasurface to
the combinationof grounded slab and printed metalizations
on top of it. Because the patterning is sub-wavelength, wave
phenomena on the metasurface can be suitably approximated
in terms of an equivalent surface impedance relating the tan-
gential components of the average electric and magnetic fields.
This surface impedance typically takes on space-dependent
values to realize guiding or radiating components [3]–[5].By
modulating the equivalent surface impedance it is possibleto
engineer the interaction of a given incoming field with the
metasurface so as to design a large number of devices [6]. For
instance, metasurfaces can be used to change the propagation
constant of surface waves, thus realizing planar lenses [7], or
leaky-wave antennas [3]–[5]. The very effect of metasurface
antennas and lenses derives from the spatial variability ofthe
(tensorial) surface impedance, sought by design.
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The metasurface modulation can be obtained by gradually
changing the geometry of the elements in contiguous cells,
while maintaining the period unchanged and very small in
terms of a wavelength. Macroscopically, this results in a
modulation of the equivalent impedance of the metasurface,
that, due to the small dimensions of the unit cell, can be
assumed to be almost continuous. Metasurfaces consisting
of electrically small printed patches with a symmetric shape
result in a surface impedance that is mostly scalar. By using
asymmetric constituent elements, however, it is possible to
design metasurfaces with specific anisotropic behaviors. This
kind of artificial surfaces can be effectively described through
an equivalent impedance tensor. It has been recently suggested
that modulated anisotropic metasurfaces can be used to re-
address the propagation path of an incident surface wave [8].
This approach provides effects similar to those obtained by
applying Transformation Optics in volumetric inhomogeneous
metamaterials, but with a significant technological simplifica-
tion.

The typical design of a metasurface device starts from an
analytic determination of the surface impedance (e.g. [5],[9])
which rests on some approximation; this surface impedance
is then realized by appropriately sized cells, with this design
phase usually based on a local periodicity assumption. It
is therefore desirable to have an intermediate tool to assist
antenna engineers during the design phase: such tool shall
be able to predict the electromagnetic behavior of a given
surface impedance profile without further approximations;the
cell design process can thus start after the surface impedance
has proven to produce the desired performances. During all
retuning of the metasurface, only the impedance profile needs
be updated, with no mesh change necessary, and without the
explicit CAD drawing of all cells. This drastically reducesthe
time needed to optimize sizes, shapes and locations of the
single elements. Likewise, the necessary full-wave analysis of
the actual structure will be typically carried out only at the end
of the design process, with minimal retuning of the individual
cells.

Motivated by this, we investigate on the full-wave solu-
tion of the boundary-value problem for the IBC in realistic
geometries employing the integral-equation formulation (with
Method of Moments (MoM) discretization). In particular, we
address the stability properties of the associated numerical
problem, which play a crucial role in the analysis of the
metasurface. Obviously, we are not addressing here the prob-
lem of how to design a reactance profile satisfying some
goal requirements. However, we hope that our finding will
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expedite the design process. Finally, we remark that during
design retuning where only the impedance profile is changed,
key components of the MoM matrix need not be re-computed
(even when using fast factorizations), significantly expediting
this optimization phase.

A recent paper [10] has addressed the problem of scat-
tering from IBC surfaces in a very efficient and promising
way, by discretizing both electric and magnetic currents and
thanks to a self-dual formulation stable with frequency and
impedance. However, applying [10] to thin layer problems,
as the ones arising from metasurface analysis, is non-trivial.
Here, we explore different formulations to analyze the very
specific problem of metasurfaces, including how to extend the
validity of the IBC itself (i.e. how to better cope with spatial
dispersivity).

Finally, it is worth mentioning here that Generalized Sheet
Transition Conditions (GSTC) [11], [12] generally provide
a more general description of the metasurface; there is a
connection between the GSTC and IBC, which is discussed
in [2]. Further, we remark here that the aim of this work is
not discussing under which conditions the IBC is applicable;
on the contrary, we address the numerical issues arising in
dealing with the IBC when this is satisfactorily applicable.
There is indeed a vast literature discussing the validity ofthe
IBC model (see, e.g., [13] and references therein).

The remainder of the paper is organized as follows: in
Section II, we introduce three different integral formulations
to address metasurfaces; Section III discusses the stability
properties of the formulations, and in Section IV a set of real-
life metasurfaces is presented to analyze the performance of
these formulations. Preliminary results and applicationsof the
proposed approach have been presented in conference papers
[14], [15]. Finally, a brief conclusion is given in Section V.

II. FORMULATION

With reference to Fig. 1, the (tensor) surface Impedance
Boundary Condition (IBC) on a surfaceΣ can be written in
two ways:
a) relating the rotated tangential traces of the fields on the
exterior of a closed surface (or half-space) [10], [16]–[20]

n̂×EΣ+ = n̂×
[

Z
s
· (n̂×HΣ+)

]

(1)

where n̂ is the (outward) unit vector normal to the surface
Σ, Z

s
is the tensorial surface impedance, and the subscripts

Σ+ and Σ− indicate whether the field is evaluated in the
limit approachingΣ from the direction identified bŷn or −n̂,
respectively; or
b) relating the rotated tangential trace of the average electric
field to the rotated tangential trace of the magnetic field jump
across an infinitely thin surface [2], [12]

n̂× Eav = n̂×
[

Z
s
·
(

n̂× (HΣ+ −HΣ−)
)]

(2)

Equations (1) and (2) are sometimes denoted aszeroth order
IBCs [13], and the impedance parameters are valid only
for single incidence (typically, normal incidence for scatter-
ing, and surface wave incidence for metasurface antennas);
higher order IBCs provide a more accurate modeling of the

impedance surface, at the additional cost of being non local.
In the following, we will not discuss higher order IBCs, as
the subject goes beyond the scope of the paper; rather, we
will focus our attention on the numerical stability of the
zeroth order IBCs, specifically in the presence of a reactive
impedance boundary condition, extending its validity beyond
the single incidence.

Our aim is to solve (1) or (2) by means of the Method
of Moments (MoM). We start by expressing the electric and
magnetic fields as a function of the tangential components of
the fields on the equivalent surfaceΣ = Σ+ ∪ Σ−, a closed
boundary enclosing the metasurface (shown in fig. 1), in virtue
of the uniqueness and Love theorems. To this aim we resort
to Stratton-Chu formulation [21] for the scattered fields:

E
s =

∫

Σ

Gej(r, r′) ·
(

n̂Σ ×HΣ(r
′)
)

dr′+
∫

Σ

Gem(r, r′) ·
(

− n̂Σ × EΣ(r
′)
)

dr′

H
s =

∫

Σ

Ghj(r, r′) ·
(

n̂Σ ×HΣ(r
′)
)

dr′+
∫

Σ

Ghm(r, r′) ·
(

− n̂Σ ×EΣ(r
′)
)

dr′

(3)

where Gej , Gem, Ghj and Ghm are suitable (i.e. problem
dependant) dyadic Green’s functions.

A. Opaque IBC-EFIE

Let’s consider theopaqueor one-sidedIBC of eq. (1):
this model assumes that the impedance sheet is impenetrable,
which in turn implies that fields on the negative sideΣ− are
null, and substitution of (3) into (1) yields:

n̂×E
inc
Σ+ + n̂×

∫

Σ

Gej ·
(

n̂×HΣ+

)

dr′+

n̂×
∫

Σ

Gem ·
(

− n̂×EΣ+

)

dr′ = n̂×
[

Z
s
· (n̂×HΣ+)

]

(4)
with n̂ ≡ n̂Σ+ . In the opaque model, the tensorZ

s
accounts

for the sheet impedance (e.g., the patches) and the grounded
dielectric slab; consequently, the sheet currentsJ = n̂×HΣ+

andM = −n̂×EΣ+ = −n̂×
(

Z
s
· J

)

radiate in free space,
and the appropriate Green’s functions are:

Gej (r, r′) = jk

[

I +
∇∇′

k2

]

e−jkR

4πR

Gem (r, r′) = ∇×
(

e−jkR

4πR
I

)

with R = ‖r− r
′‖, and k = ω

√
ε0µ0. Note that, when the

surfaceΣ+ is planar, the principal value of̂n×
∫

Σ
Gem ·M dr′

vanishes, and the integral reduces to−1/2M. This assumption
is always valid for the planar metasurfaces considered here,
and substitution of eq. (1) into eq. (4) yields the following
modified Electric Field Integral Equation (EFIE):

n̂×E
inc = −n̂×

∫

Σ

Gej · J dr′ +
1

2
n̂×

(

Z
s
· J

)

(5)

Eq. (5) is an equation in one unknown (theequivalentelectric
current densityJ = n̂×HΣ+ ), which can be discretized and
solved by means of the MoM.
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Fig. 1. The geometry for deriving the integral equation describing the
metasurface (identified in red).

B. Transparent IBC-EFIE

Conversely, if one aims to solve eq. (2), after expressing the

left hand side aŝn×Eav =
1

2
n̂×

(

EΣ+ +EΣ−

)

, analogous
derivations and the introduction of the two equivalent current
densitiesJ = n̂×(HΣ+−HΣ−) andM = −n̂×(EΣ+−EΣ−)
yield:

n̂×E
inc =− n̂×

∫

Σ

Gej · J dr′−

n̂×
∫

Σ

Gem ·M dr′ + n̂×
(

Z
s
· J

)

(6)

Differently from the opaque case,Z
s

now does not take
into account the grounded slab, as it only describes the field
jump across the sheet of patches. The effect of the slab,
on the other hand, has to be accounted for by the Green’s
functions. Several formulations are well known in literature for
modeling the Green’s functions in layered media; a discussion
about them goes beyond the scope of the present paper, and
we will only mention that the formulation employed in the
remainder of the paper is the Mixed-Potential formulation
by Michalski [22]. Obviously, once the characteristics of the
grounded dielectric slab are chosen (i.e., its thicknessh and its
permittivity/permeability), there is a one-to-one relation [23]
between the two impedance tensors of eq. (1) and (2), which
is particularly simple when a TE/TM basis is fixed:

Y opaque

s
= Y transp

s
+

[

Y TM
slab (ks) 0

0 Y TE
slab(ks)

]

(7)

whereY
s
= Z−1

s
, and the admittances of the slabY TM

slab and
Y TE
slab explicitely depend on the (local) wavenumberks of the

guided wave:
Y TM
slab = −j

ωε

kz
cot(kzh)

Y TE
slab = −j

kz
ωµ

cot(kzh)
(8)

where kz =
√

k2 − k2s . Note that, for normal incidence,
ωε

kz
=

kz
ωµ

=

√

ε

µ
, andY TM

slab = Y TE
slab, as expected (the two

polarizations are indistinguishable). It is worth noting here that
ks in eq. (7) is the transverse wavenumber of the surface wave
locally supported by the structure, and it is obtained by solving
the local resonance equation [6].

Eq. (6) is an equation in two unknowns (J andM), and
requires an additional condition to be enforced, e.g. the dual

of eq. (2), relating the average magnetic field to the jump of
the electric field:

n̂×Hav = n̂×
[

Y
ms

·
(

− n̂×(EΣ+ −EΣ−)
)]

(9)

Note that the surfacemagneticadmittanceY
ms

is a tensor
independent fromZ

s
(see [2] and references therein). How-

ever, under the assumption that the patches synthesizing the
metasurfaces are thin, the tangential electric field is continuous
(null on metalizations, continuous across a dielectric inter-
face), yieldingM = n̂×(EΣ+ − EΣ−) = 0. In the following
we will restrict our attention to the case where this assumption
is valid, so that the term

∫

Σ
Gem ·M dr′ does not contribute

to radiation, and eq. (6) can be solved for the sole unknown
J.

It is worth mentioning here that the formulation of eq. (6) is
general, and is not limited to planarly layered media; however,
in the presence of different backgrounds, Green’s functions
are available only in a few cases (e.g., in the case of coated
cylinders [24]). On the other hand, when the Green’s function
of the problem is not available, the numerical solution of eq.
(2) requires discretization of the interfaces between different
media (see, e.g., [10], [17]). In the rest of the paper, without
loss of generality, we will focus on planar stratifications only.

C. Alternative IBC-EFIE

A slightly different formulation to discretize eq. (1) is also
possible: with reference to Fig. 2, the equivalence surface
is built to enclose the dielectric slab, with its boundary
represented by the metasurface (Σ+ in figure), the metallic
ground plane (Σ−), and the closure where the slab is truncated
(Σe). For thin substrates it is typically reasonable to neglect
the effects of the currents on sidewallsΣe, and the following
equations can then be derived:

n̂Σ+ ×EΣ+ = n̂Σ+ ×
[

Z
s
· (n̂Σ+ ×HΣ+)

]

on Σ+

n̂Σ− ×EΣ− = 0 on Σ−

(10)

These boundary conditions require the presence of electric
currentsJ− = n̂Σ− ×HΣ− on Σ−, and electric and magnetic
currents,J+ = n̂Σ+ × HΣ+ and M

+ = −n̂Σ+ × EΣ+ =
−n̂Σ+ ×

(

Z
s
·J+

)

, onΣ+. As in the case of eq. (5), magnetic
currents are expressed in terms of electric currents, and (10)
is a system of two equations in two unknowns (J

+ andJ−).
Love’s equivalence theorem applied onΣ+ ∪ Σ− allows to
remove the dielectric slab and fill the interior volume with
free space; consequently,J

+ andJ− radiate in a homogeneous
medium, with the same Green’s functions as in eq. (5).

III. STABILITY OF THE FORMULATIONS

A. Condition properties of the IBC-EFIE formulations

In order to focus on the relevant properties of the formu-
lations, tests have first been carried out with the smallest
meaningful size; we considered a square patch of size0.1λ
(the frequency of analysis isf0 = 7.5GHz), discretized with
4 triangles and analyzed by means of a MoM discretization
with Rao-Wilton-Glisson (RWG) [25] basis functions and
tested ontôn×RWG. The surface impedance is constant and
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isotropic, i.e.,Z
s
=Zs I , with I the identity dyad. The condi-

tion number of the MoM matrix is studied as a function of the
impedance valueZs; Fig. 3(a) summarizes the behavior of the
condition number, when the real and imaginary components of
the surface impedanceZs vary in the interval[−10Z0, 10Z0],

with Z0 =

√

µ0

ε0
the wave impedance in vacuum; three

distinct peaks of the condition number are clearly visible on
the imaginary axis ofZs. When increasing the discretization,
the number of peaks in the condition number increases too
(see fig. 4(a), referring to a square plate discretized with
313 unknowns); eventually, for very dense discretizations, the
problem is ill-posed in a continuous interval on the positive
imaginary axis. By looking at the spectrum of the discretized
operator for the problem with 4 unknowns (fig. 3(b)), it is
clear that some imaginary impedance values have the effect
of moving one singular value of the system matrix to the
origin, accordingly making the system ill conditioned. Note
that typical values of reactance required to support surface
waves in a metasurface fall into the ill-conditioned interval.
We stress that the above analysis is merely a study of the
numerical properties of the discretization of the IBC equations;
consequently, some values ofZs in the considered range
may not correspond to realistic structures (e.g.,Rs < 0).
It is worth noting that the problem is intrinsically linked to
the specific reactance values implied by metasurfaces, which
are in turn solutions of a transverse resonance problem (see,
e.g., [8] and references therein); conversely, it does not show
up when studying the scattering from a surface described
through reactive IBCs (e.g., successfully analyzed with the
one-sided IBC-EFIE in [26]), nor for real values of the surface
impedanceZs ∈ R [16], [17], [27].

Conversely, different properties of the IBC-EFIE are ob-
tained when eq. (6) is enforced. Despite the equation has
still the same form of the one-sided IBC-EFIE in (5), and
as a consequence instability regions for some values ofZs

are expected, it can be verified that the region where the
transparent IBC-EFIE is unstable is different from the region
where the one-sided IBC-EFIE is unstable, as shown in fig.
4(b), where the condition number of the IBC-EFIE is studied

as a function of the normalized reactance
Xs

Z0

. The results

show how the instability region is shifted; most important,
typical values ofXs involved in metasurfaces lie in the
instability range of the one-sided IBC-EFIE, but not in the

Fig. 2. Alternative application of the equivalence theoremto derive the
integral formulation of the IBC on the metasurface (identified in red): the
equivalence surface (the blue dashed line in figure) is splitinto: a)Σ+, where
the one-sided IBC is enforced; b)Σ−, where the PEC condition is enforced;
c) Σe, the lateral edges of the closed surfaces, which are neglected.

instability range of the transparent IBC-EFIE.
Consequently, the transparent IBC has a twofold benefit

over the opaque IBC:
• it yields a well-conditioned matrix equation for typical

metasurface reactances, as shown in fig. 4(b).
• the spatial dispersion in the dielectric slab is taken into ac-

count by the layered Green’s functions (and, therefore, the
slab admittanceY TM

slab extracted in (7) depends explicitly
on ks); this is not true for the case of the one-sided IBC,
where the spatial dispersion is neglected, which is both
incorrect and unphysical. Note that the dispersion of the
impedance sheets (typically realized with sub-wavelength
metallic patches) is always neglected; however, it can be
verified that the dispersion of the patches is typically
negligible. The importance of spatial dispersion and its
effects on metasurface problems have been discussed in
two recent works [28], [29].

We observe that this formulation, while different, is in agree-
ment with the recommendations of [2] on the descriptors of
the IBC.

B. Isotropic surface impedance: planar Luneburg lens

We next consider the case of an impedance profile corre-
sponding to the Luneburg lens:

Zs = jZ0

√

k2s
k2

[

2−
(

ρ

R

)2]

− 1 (11)

where ρ is the distance from the center,R = 12.5cm is
the radius of the lens, andks is the wavenumber of the TM
guided wave supported by the structure (a PEC-backed dielec-
tric slab). The lens has been discretized with 12’510 RWG
functions, and analyzed at the frequency of 7.5 GHz. The
impedance profile described by (11) possesses the property
of focusing parallel rays into a single point on the edge of the
lens (or, reciprocally, transforming rays launched by a point
source on the edge into a plane wavefront on the opposite side
of the lens). If one applies the one-sided IBC (5) to analyze the
structure the resulting MoM matrix is very ill-conditioned, and
an iterative solution fails to converge (see fig. 5). On the other
hand, if one uses the transparent IBC (6) the resulting system
matrix is well-conditioned, and the system converges to the
correct solution, as in Fig. 6. This option requires explicitly
taking into account a specific dielectric slab, and evaluating
the Green’s functions in a layered medium; Fig. 6 shows the
current density on the lens with an Arlon AR 1000 dielectric
substrate (εr = 9.8, thicknessh = 1.575mm) and excited
through a point source placed in(x = R, y = 0), when eq.
(6) is enforced: as expected, the correct focusing behaviorof
the Luneburg lens is satisfactorily captured. Conversely,when
eqs. (5)-(10) are enforced, it is impossible to correctly predict
fields on the surface of the lens (see Figs. 7-8).

An explanation of the reason why the opaque IBC-EFIE
fails to correctly model the metasurface can be given as
follows: when applying eq. (1), one is analyzing a resonant
problem (as a matter of fact, the surface reactanceXs is
obtained as a solution of a resonant problem). On the other
hand, when the problem is modeled by means of eq. (2), one
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(a) log10 of condition number vs (constant) surface impedance.
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(b) Eigenvalues (absolute value) of the system matrix whenZs = jXs.

Fig. 3. Square plate -NDoF = 4.

is analyzing field jumps across the dielectric interface, and
the fields above and belowΣ can be correctly reconstructed
at the cost of a more expensive Green’s function computation.
The latter, together with the correct handling of the spatial
dispersion in the dielectric slab (key point in guided wave
phenomena), indicates that metasurfaces shall be analyzed
through the transparent IBC-EFIE of eq. (6).

IV. N UMERICAL EXAMPLES

The previous analysis has been carried out for isotropic sur-
face impedances but the results can be applied to the tensorial
case. We remark that we have employed our formulation to
significant anisotropies (see Sec. IV-B) without problems.

All the numerical results presented in the following sections
have been obtained with the formulation of eq. (2); previous
sections proved how this is the only formulation capable of
handling metasurface problems.

(a) Condition number (log10) of the opaque IBC-EFIE.
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 Opaque IBC−EFIE − Eq. (5)
Transparent IBC−EFIE − Eq. (6) (ε = 3.3)
Transparent IBC−EFIE  − Eq. (6) (ε = 9.8)
Eq. (10)

(b) Condition number for imaginary surface impedances - Comparison between
different IBC-EFIE formulations.

Fig. 4. Square plate -NDoF = 313.

Fig. 5. Convergence of the GMRES solver for the planar Luneburg lens at
7.5 GHz.

A. Isotropic surface impedance: a planar Maxwell’s fish-eye
lens

In this section, a planar lens implementing the impedance
profile of a Maxwell’s fish-eye lens is considered:

Zs = jZ0

√

√

√

√

√

√

√

√

4

(

ks

k

)2

[

1 +

(

ρ

R

)2]2
− 1 (12)
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Fig. 6. Surface current density (dBA/m) on the planar Luneburg lens at 7.5
GHz with eq. (6).

Fig. 7. Surface current density (dBA/m) on the planar Luneburg lens at 7.5
GHz with eq. (5).

where ρ is the distance from the center,R = 12.5cm is
the radius of the lens, andks is the wavenumber of the
TM guided wave supported by the structure (a PEC-backed
dielectric slab). The lens has been discretized with 27’866
RWG functions, and analyzed at the frequency of 7.5 GHz.
The impedance profile described by (12) possesses the prop-
erty of focusing each point on its circumference to the point
diametrically opposed to it. The lens has been realized on
the same substrate of Sec. III-B; it has been excited with a
ẑ−polarized point source located in(x = 13cm, y = 0). Fig. 9
shows the real part of the vertical component of the electric
field, on a plane z=5mm (i.e., 3.425mm above the lens): the
focusing property of the lens is correctly predicted by the IBC
model.

The lens has also been implemented with circular patches
with a square slot (possibly null) in the middle, printed on
the substrate; the size of the patches and of the slots is varied
locally to reproduce the variable impedance profile of eq. (12).
The vertical component of the electric field of the actual
realization is reported in fig. 10: excellent agreement withthe
results predicted by the IBC model can be verified (details
about the actual realization with patches of the lens can be
found in [30]).

B. Anisotropic surface impedance: a beam shifting surface

In this section, a planar beam-shifter based on transforma-
tion optics and on the work in [9], is studied through the IBC-
EFIE formulation. The beam-shifter is realized with a (con-

Fig. 8. Surface current density (dBA/m) on the planar Luneburg lens at 7.5
GHz with eq. (10).
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Fig. 9. Planar Maxwell’s fish-eye lens: the vertical component (real part) of
the electric field (V/m), on a plane 3.425mm above the lens. Results obtained
with the IBC model; the circumference delimits the lens region.

stant) anisotropic surface impedance printed on a grounded
dielectric slab, as depicted in Fig. 11. The anisotropic region
is designed such as to bend by13◦ an incident Gaussian beam
traveling in the direction+x̂ and vertically polarized (along
ẑ), at a frequency of 9 GHz. The beam-shifter is realized
with a grounded dielectric slab of thicknessh = 1.55mm
and permittivityεr= 14; on top of the dielectric slab the the
anisotropic region has a tensorial reactance, when a Cartesian
basis is fixed, described by:

[Z s ] =

[

jXxx jXxy

jXyx jXyy

]

(13)

with Xxx = −1300Ω, Xyy = −1626Ω, andXxy = Xyx =
1215Ω. Fig. 12 shows the y-component of the magnetic field
Hy = ŷ ·H on the beam-shifting surface. The Gaussian beam,
launched in the isotropic region, excites a surface wave in the
grounded slab, which is refracted by13◦ when encountering
the anisotropic region.

C. Anisotropic surface impedance: an holographic antenna

To prove the effectiveness of the approach, we apply it to
the analysis of a holographic antenna based on the work in
[5]. The antenna is a circular disc with diameterD = 54 cm,
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Fig. 10. Planar Maxwell’s fish-eye lens: the vertical component (real part) of
the electric field (V/m), on a plane 3.425mm above the lens. Results obtained
with a full-wave simulation of the actual realization of thelens with patches;
the circumference delimits the lens region.

Fig. 11. A beam-shifting surface is realized with a (constant) anisotropic
surface impedance printed on a grounded dielectric slab. The anisotropic
region is designed to bend an impinging Gaussian incident beam, traveling in
the direction+x̂ and vertically polarized (alonĝz), by 13◦ with respect to
the x-axis.

corresponding to about 15λ at the frequencyf0 = 8.425 GHz,
with an anisotropic impedance profile which, fixed the basis
in cylindrical coordinates, takes the following form:

[Z s ] = jZ0

[

ηρρ ηρφ
ηφρ ηφφ

]

(14)

with
ηρφ = ηφρ = ηs m cos(Kρ)

ηρρ = ηs
[

1 +m sin(Kρ)
]

ηφφ = ηs
[

1− m

2
sin(Kρ)

]

(15)

In the above,ηs = 0.55, m = 0.3, K= 2π/d, andd=0.87λ=
31mm is the radial period of the modulation. The antenna
is discretized with 33678 triangular facets, corresponding to
50’079 RWG basis functions, and analyzed with eq. (6) in the

Fig. 12. Hy [A/m]: y-component of the magnetic field on the beam-shifting
surface; the incident gaussian beam is bent by13◦.

presence of the Arlon AR 1000 dielectric substrate actually
assumed in the rest of the design (εr = 9.8, thicknessh =
1.575mm).

This design has next been implemented with circular
patches realizing the reactance of eq. 14 (not reported here),
and a simulation of the actual antenna has been carried out,
modeling each patch realizing the impedance profile; Fig. 13
shows the comparison between the two models (IBC and actual
antenna) for the directivity pattern in the planeϕ = 0◦.
The excellent agreement between results shows that the IBC
model can be considered as a very good approximation of the
actual behavior of the metasurface antenna. Its advantagesare
particularly evident in the design phase, where fast analysis
of an impedance surface can be carried out without the need
of designing and drawing in the CAD model each patch
individually, a process which can be very time consuming, es-
pecially when an optimization is required. Note that a variable
impedance profile intrinsically requires the single elements
to be different from each other (e.g., circular patches with
different diameters), even though it is often possible to place
them in a periodic (regular) arrangement. It is then clear that
an optimization process during design is highly accelerated
when only the impedance profile shall be simulated.

It is worth noting that a change in the impedance profile
does not require to recompute the system matrix, typically the
most time consuming step (especially in the presence of a
layered medium, in which Green’s functions are non-trivial);
it is indeed sufficient to recompute the last term of eq. (6),
namelyn̂×

(

Z
s
· J

)

.
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Fig. 13. Directivity pattern of the holographic antenna in acut in the xz
plane (ϕ = 0); the antenna is fed with a vertical pin, placed in the originof
the reference system (the center of the antenna); RHCP and LHCP refer to,
respectively, right hand and left hand circular polarizations.

V. CONCLUSION

We studied different numerical discretization schemes,
based on an integral formulation and on a surface impedance
model, for problems involving metasurfaces and guided wave
phenomena. Two of the three considered formulations suffer
of instability problems in the cases of interest, while the
transparent model of the IBC, which only models the thin
sheet of patches, yields a stable discretization and accurate
results. Results proving the effectiveness of the transparent
IBC-EFIE are shown for realistic problems.
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