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On the Numerical Simulation of Metasurfaces with
Impedance Boundary Condition Integral Equations

Matteo Alessandro FrancavilldJember, IEEE Enrica Martini, Senior Member, |IEEEStefano
Maci, Fellow, IEEE, Giuseppe Vecchirellow, IEEE

Abstract—Metasurfaces are thin metamaterial layers charac-

terized by unusual dispersion properties of surface/guidé wave
and/or reflection properties of otherwise incident plane waes.
At the scales intervening in their design, metasurfaces calhe
described through a surface impedance boundary conditionThe
impedance, possibly tensorial, is often "modulated” i.e.ti can
vary from place to place on the surface (by design). We inveigtate
on different integral equation formulations of the problem, with
special attention to the stability properties of the resuling system
matrix.

Index Terms—Metasurfaces, Moment methods (MoM), integral
equations, impedance boundary condition (IBC), anisotrofx
surface impedance.

|. INTRODUCTION

The metasurface modulation can be obtained by gradually
changing the geometry of the elements in contiguous cells,
while maintaining the period unchanged and very small in
terms of a wavelength. Macroscopically, this results in a
modulation of the equivalent impedance of the metasurface,
that, due to the small dimensions of the unit cell, can be
assumed to be almost continuous. Metasurfaces consisting
of electrically small printed patches with a symmetric ghap
result in a surface impedance that is mostly scalar. By using
asymmetric constituent elements, however, it is possible t
design metasurfaces with specific anisotropic behavidngs T
kind of artificial surfaces can be effectively describedtigh
an equivalent impedance tensor. It has been recently siegges
that modulated anisotropic metasurfaces can be used to re-

In recent years metamaterials have inspired several applidress the propagation path of an incident surface wave [8]

cations in designing antennas and microwave componenfis approach provides effects similar to those obtained by
thanks to the possibility of achieving electromagneticgem®  applying Transformation Optics in volumetric inhomogengo
ties impossible to find in nature. Metasurfaces are thin meldetamaterials, but with a significant technological siffiqa
material layers characterized by unusual reflection ptaser tjon.

of plane waves and/or dispersion properties of surfacéégli  The typical design of a metasurface device starts from an
waves [1], [2]. Metasurfaces can be realized at microway@alytic determination of the surface impedance (e.g.[&),
frequencies by printing a dense periodic texture of sma{hich rests on some approximation; this surface impedance
elements on a grounded slab, with or without shorting viag; then realized by appropriately sized cells, with thisigies

in the following, we will refer with the term metasurface Phase usually based on a local periodicity assumption. It
the combinationof grounded slab and printed metalizationgs therefore desirable to have an intermediate tool to tassis
on top of it. Because the patterning is sub-wavelength, wa¥ftenna engineers during the design phase: such tool shall
phenomena on the metasurface can be suitably approximaigdaple to predict the electromagnetic behavior of a given
in terms of an equivalent surface impedance relating the tayface impedance profile without further approximatiahs;
gential components of the average electric and magnetisfielce|| gesign process can thus start after the surface impedan
This surface impedance typically takes on space-dependggt proven to produce the desired performances. During all
values to realize guiding or radiating components [3]-85}. retuning of the metasurface, only the impedance profile sieed
modulating the equivalent surface impedance it is possiblepg updated, with no mesh change necessary, and without the
engineer the interaction of a given incoming field with theyplicit CAD drawing of all cells. This drastically reducte
metasurface so as to design a large number of devices [6]. ffe needed to optimize sizes, shapes and locations of the
instance, metasurfaces can be used to change the promag@ﬁ'v,@e elements. Likewise, the necessary full-wave aisbfs
constant of surface waves, thus realizing planar lense®f{7] ihe actual structure will be typically carried out only a¢ #nd
leaky-wave antennas [3]-[5]. The very effect of metas&fagf the design process, with minimal retuning of the indivtiu

antennas and lenses derives from the spatial variabilithef .q)s.

(tensorial) surface impedance, sought by design.
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Motivated by this, we investigate on the full-wave solu-
tion of the boundary-value problem for the IBC in realistic
geometries employing the integral-equation formulatiorth
Method of Moments (MoM) discretization). In particular, we
address the stability properties of the associated nualeric
problem, which play a crucial role in the analysis of the
metasurface. Obviously, we are not addressing here the prob
lem of how to design a reactance profile satisfying some
goal requirements. However, we hope that our finding will



expedite the design process. Finally, we remark that durimgpedance surface, at the additional cost of being non local
design retuning where only the impedance profile is changed,the following, we will not discuss higher order IBCs, as
key components of the MoM matrix need not be re-computdlde subject goes beyond the scope of the paper; rather, we
(even when using fast factorizations), significantly extieg will focus our attention on the numerical stability of the
this optimization phase. zeroth order IBCs, specifically in the presence of a reactive
A recent paper [10] has addressed the problem of scafipedance boundary condition, extending its validity bejyo
tering from IBC surfaces in a very efficient and promisinghe single incidence.
way, by discretizing both electric and magnetic currentd an Our aim is to solve (1) or (2) by means of the Method
thanks to a self-dual formulation stable with frequency amf Moments (MoM). We start by expressing the electric and
impedance. However, applying [10] to thin layer problemsnagnetic fields as a function of the tangential components of
as the ones arising from metasurface analysis, is noratrivithe fields on the equivalent surfage= ¥ U ¥, a closed
Here, we explore different formulations to analyze the vefyoundary enclosing the metasurface (shown in fig. 1), inugirt
specific problem of metasurfaces, including how to exterd tlof the uniqueness and Love theorems. To this aim we resort
validity of the IBC itself (i.e. how to better cope with spati to Stratton-Chu formulation [21] for the scattered fields:

dispersivity). s o P , ,

Finally, it is worth mentioning here that Generalized Sheet E"= /Zg (r,x) - (B x Hy(x')) dr'+
Transition Conditions (GSTC) [11], [12] generally provide
a more general description of the metasurface; there is a /gem(r,r’) - (—hy x Eg(r')) dr’
connection between the GSTC and IBC, which is discussed > _ 3)
in [2]. Further, we remark here that the aim of this work is H° = / GM(r,r') - (hy x Hy(r')) dr'+
not discussing under which conditions the IBC is applicable IR
on the contrary, we address the numerical issues arising in / Ghm(r,r') - (—fy x Eg(r)) dr’
dealing with the IBC when this is satisfactorily applicable T

There is indeed a vast literature discussing the validitthef where G/, g™, G"7 and G"™ are suitable (i.e. problem
IBC model (see, e.g., [13] and references therein). dependant) dyadic Green’s functions.

The remainder of the paper is organized as follows: in
Section II, we introduce three different integral formidas A. Opaque IBC-EFIE
to address metasurfaces; Section Il discusses the $sfabili Let's consider theopaqueor one-sidedIBC of eq. (1):
properties of the formulations, and in Section IV a set of-reahis model assumes that the impedance sheet is impenetrable
life metasurfaces is presented to analyze the performahceahich in turn implies that fields on the negative sile are
these formulations. Preliminary results and applicatiointhe null, and substitution of (3) into (1) yields:
proposed approach have been presented in conference papers S
[14], [15]. Finally, a brief conclusion is given in Section V ax EZC + n></ g% (A x Hy+) dr'+

(A % HZ+)}

With reference to Fig. 1, the (tensor) surface Impedance . (4)
Boundary Condition (IBC) on a surfacé can be written in with n = n,+. In the opaque model, the tensgr accounts
two ways: for the sheet impedance (e.g., the patches) and the grounded
a) relating the rotated tangential traces of the fields on tdelectric slab; consequently, the sheet currdnisn x H,,+
exterior of a closed surface (or half-space) [10], [16]4[20 andM = —n x E;+ = —nx ( Z -J ) radiate in free space,
and the appropriate Green’s functions are:

= —s

II. FORMULATION ﬁx/gem- (fﬁxEﬁ)dr’:ﬁx [Z

OxEgr =nx|Z (A xHg) 1) § / OO e kR
wheren is the (outward) unit vector normal to the surface g (r,r) = Jk[£+ ?] AR
3, Z is the tensorial surface impedance, and the subscripts o—ikR
»* and ¥~ indicate whether the field is evaluated in the G (r,r') =V x ( 1 1)
limit approaching® from the direction identified by or —n, o mR =
respectively; or with R = ||r —r'[|, andk = w,/Zop0. Note that, when the

b) relating the rotated tangential trace of the averagetridec Surfacex* is planar, the principal value @fx [, G“"-M dr’
field to the rotated tangential trace of the magnetic fieldgunvanishes, and the integral reduces-ty>M. This assumption
across an infinitely thin surface [2], [12] is always valid for the planar metasurfaces considered, here

and substitution of eq. (1) into eq. (4) yields the following
n x By, =0 x {és ' (ﬂ x (Hg+ — Hr))} (2) modified Electric Field Integral Equation (EFIE):

Equations (1) and (2) are sometimes denotedeasth order AXE™ — _f x / GY . J dr' + lﬁx (z-3) (5
IBCs [13], and the impedance parameters are valid only x= 2 =

for single incidence (typically, normal incidence for geat Eg. (5) is an equation in one unknown (tbguivalentelectric
ing, and surface wave incidence for metasurface antennas)irent density] = n x H,+), which can be discretized and
higher order IBCs provide a more accurate modeling of tiealved by means of the MoM.
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Fig. 1. The geometry for deriving the integral equation déstgy the
metasurface (identified in red).

B. Transparent IBC-EFIE

Conversely, if one aims to solve eq. (2), after expressieg t

left hand side asi x E,, = —n x (Ey+ + E,-), analogous
derivations and the introduction of the two equivalent entr
densities] = nx (Hy,+ —H,-) andM = —ax (Ey+ —E.-)

yield:
x/gej-Jdr’—
E:

Ax/gem-Mdr’—i—ﬁx(Z -J)
»= —Ss

nxE" = _h

(6)

Differently from the opaque caseZ_ now does not take

of eq. (2), relating the average magnetic field to the jump of
the electric field:
-B.))] O

Note that the surfacenagneticadmittanceY = is a tensor
independent frorrZ (see [2] and references therein). How-
ever, under the assumptlon that the patches synthesizeng th
metasurfaces are thin, the tangential electric field isinaptis
(null on metalizations, continuous across a dielectrierint
face), yieldingM = n x (E,+ — E.-) = 0. In the following

we will restrict our attention to the case where this assionpt

is valid, so that the ternf, G°"* - M dr’ does not contribute

to radiation, and eq. (6) can be solved for the sole unknown
J.

h Itis worth mentioning here that the formulation of eq. (6) is
general, and is not limited to planarly layered media; havev

in the presence of different backgrounds, Green’s funstion
are available only in a few cases (e.g., in the case of coated
cylinders [24]). On the other hand, when the Green’s fumctio
of the problem is not available, the numerical solution of eq
(2) requires discretization of the interfaces betweenedifit
media (see, e.g., [10], [17]). In the rest of the paper, witho
loss of generality, we will focus on planar stratificatiordyo

Aoy =i [V (= B (Bur

C. Alternative IBC-EFIE

into account the grounded slab, as it only describes the fieldA slightly different formulation to discretize eq. (1) issal
jump across the sheet of patches. The effect of the slggssible: with reference to Fig. 2, the equivalence surface
on the other hand, has to be accounted for by the Greeigsbuilt to enclose the dielectric slab, with its boundary

functions. Several formulations are well known in literatfor

represented by the metasurface™(in figure), the metallic

modeling the Green’s functions in layered media; a disamssiground planeX ~), and the closure where the slab is truncated
about them goes beyond the scope of the present paper, @iQ. For thin substrates it is typically reasonable to neglect
we will only mention that the formulation employed in thehe effects of the currents on sidewalls, and the following
remainder of the paper is the Mixed-Potential formulatioquations can then be derived:

by Michalski [22]. Obviously, once the characteristics bét
grounded dielectric slab are chosen (i.e., its thickieasd its
permittivity/permeability), there is a one-to-one rebati[23]

between the two impedance tensors of eq. (1) and (2), whi

is particularly simple when a TE/TM basis is fixed:
YIM(k) 0

y opaque
= 0 Yia(ks)

_ gl;ransp 4 (7)
whereY = Z~', and the admittances of the slatf} and
YiE epr|C|ter depend on the (local) wavenumberof the

guided wave:

} sla%[ = j_ks cot(k.h)
yIE — —k: k.h ©
. t(k,
slab — jw‘u co ( )

where k., = +/k% — k2. Note that, for normal incidence,
k
:E = w—; = 2 andYIM = yIE as expected (the two
z

polarizations are indistinguishable). It is worth notireyé that

Nyt X Egr =ngt X és : (fl2+ X HE+) onxt

(10)
n,- xE,- =0onXx™

L?Hese boundary conditions require the presence of electric
currentsJ— = n,- x H,,- on X, and electric and magnetic
currents,J* = ng+ x Hyr and M+ g X Egr
—fi;+ % (Z_-J7), onXT. Asin the case of eq. (5), magnetic
currents are expressed in terms of electric currents, adg (1
is a system of two equations in two unknowds (andJ ™).
Love's equivalence theorem applied ah™ U X~ allows to
remove the dielectric slab and fill the interior volume with
free space; consequentlyr andJ~ radiate in a homogeneous
medium, with the same Green’s functions as in eq. (5).

[1. STABILITY OF THE FORMULATIONS
A. Condition properties of the IBC-EFIE formulations

In order to focus on the relevant properties of the formu-
lations, tests have first been carried out with the smallest

ks in eq. (7) is the transverse wavenumber of the surface waweaningful size; we considered a square patch of @iza

locally supported by the structure, and it is obtained byisgl
the local resonance equation [6].
Eq. (6) is an equation in two unknownd @nd M), and

(the frequency of analysis if = 7.5GHz), discretized with
4 triangles and analyzed by means of a MoM discretization
with Rao-Wilton-Glisson (RWG) [25] basis functions and

requires an additional condition to be enforced, e.g. the duested onta: x RWG. The surface impedance is constant and



isotropic, i.e..Z =Z, I, with I the identity dyad. The condi- instability range of the transparent IBC-EFIE.

tion number of the MoM matrix is studied as a function of the Consequently, the transparent IBC has a twofold benefit
impedance valu¢; Fig. 3(a) summarizes the behavior of thever the opaque IBC:

condition number, when the real and imaginary components of, it yields a well-conditioned matrix equation for typical
the surface impedandg; vary in the interval—10Z,, 10Z], metasurface reactances, as shown in fig. 4(b).

with Z, = 0 the wave impedance in vacuum; three * the spatial dispersion in the dielectric slab is taken irto a

o €0 - o count by the layered Green’s functions (and, therefore, the
distinct peaks of the condition number are clearly visibte o slab admittanca’7} extracted in (7) depends explicitly

the imaginary axis o¥Z,. When increasing the discretization, on k,); this is not true for the case of the one-sided IBC

the number of peaks in the condition number increases 00\ here the spatial dispersion is neglected, which is both
(see fig. 4(a), referring to a square plate discretized with jncorrect and unphysical. Note that the dispersion of the
313 unknowns); eventually, for very dense discretizatiome impedance sheets (typically realized with sub-wavelength
_probl_em is |II_-posed in a continuous interval on the_ positiv metallic patches) is always neglected; however, it can be
imaginary axis. By looking at the spectrum of the discratize  \eyified that the dispersion of the patches is typically
operator for the problem with 4 unknowns (fig. 3(b)), it is  pegjigible. The importance of spatial dispersion and its

clear that some imaginary impedance values have the effect 4tacts on metasurface problems have been discussed in
of moving one singular value of the system matrix to the 40 recent works [28], [29].

origin, accordingly making the system ill conditioned. Bot
that typical values of reactance required to support sarf
waves in a metasurface fall into the ill-conditioned intdrv he
We stress that the above analysis is merely a study of t%e
numerical properties of the discretization of the IBC eqpreg;

consequently, some values ¢f; in the considered rangeB

\We observe that this formulation, while different, is in egr
FHhent with the recommendations of [2] on the descriptors of
IBC.

. Isotropic surface impedance: planar Luneburg lens

may not correspond to realistic structures (efs, < 0). We .next consider the case of an impedance profile corre-
It is worth noting that the problem is intrinsically linked t Sponding to the Luneburg lens:
the specific reactance values implied by metasurfaces,hwhic 5 2
are in turn solutions of a transverse resonance problem (see — klg (2 — 11

. . Zs=jZo 5 2 1 (11)
e.g., [8] and references therein); conversely, it does hows k R

up when studying the scattering from a surface describ%erep is the distance from the centeR = 12.5¢m is
through reactive IBCs (e.g., successfully analyzed with thhe radius of the lens, ankl is the wavenumber of the TM
one-sided IBC-EFIE in [26]), nor for real values of the se&fa guided wave supported by the structure (a PEC-backed dielec
impedanceZ, € R [16], [17], [27]. tric slab). The lens has been discretized with 12’510 RWG
Conversely, different properties of the IBC-EFIE are obfunctions, and analyzed at the frequency of 7.5 GHz. The
tained when eq. (6) is enforced. Despite the equation haspedance profile described by (11) possesses the property
still the same form of the one-sided IBC-EFIE in (5), anef focusing parallel rays into a single point on the edge ef th
as a consequence instability regions for some value£.0f |ens (or, reciprocally, transforming rays launched by anpoi
are expected, it can be verified that the region where tBgurce on the edge into a plane wavefront on the opposite side
transparent IBC-EFIE is unstable is different from the oegi of the lens). If one applies the one-sided IBC (5) to analiee t
where the one-sided IBC-EFIE is unstable, as shown in figtructure the resulting MoM matrix is very ill-conditioneahd
4(b), where the condition number of the |§’>(C-EF|E is studieg iterative solution fails to converge (see fig. 5). On theeot
as a function of the normalized reactaneg. The results hand, if one uses the transparent IBC (6) the resulting syste
{natrix is well-conditioned, and the system converges to the
correct solution, as in Fig. 6. This option requires exgici
éaking into account a specific dielectric slab, and evahgati
the Green'’s functions in a layered medium; Fig. 6 shows the
current density on the lens with an Arlon AR 1000 dielectric

show how the instability region is shifted; most importan
typical values of X involved in metasurfaces lie in the
instability range of the one-sided IBC-EFIE, but not in th

A substrate £, = 9.8, thicknessh = 1.575mm) and excited
s Ny through a point source placed (@ = R,y = 0), when eq.
T - (6) is enforced: as expected, the correct focusing behafior
: , , ! the Luneburg lens is satisfactorily captured. Conversefen
Ze Eml :Hmt 0 1 26 . . .
! . egs. (5)-(10) are enforced, it is impossible to correctlydact

5 l_ﬁ fields on the surface of the lens (see Figs. 7-8).
T An explanation of the reason why the opaque IBC-EFIE
fails to correctly model the metasurface can be given as
Fig. 2. Alternative application of the equivalence theorémnderive the follows: when applying eq. (]_), one is analyzing a resonant
integral formulation of the IBC on the metasurface (ideedfiin red): the ;
equivalence surface (the blue dashed line in figure) is spét a) >+, where prOb_lem (as a matt[er of fact, the surface reactaiGeis
the one-sided IBC is enforced; B)~, where the PEC condition is enforced; Obtained as a solution of a resonant problem). On the other
c) ¢, the lateral edges of the closed surfaces, which are neglected. hand, when the problem is modeled by means of eq. (2), one
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is analyzing field jumps across the dielectric interfaced ar
the fields above and below can be correctly reconstructed
at the cost of a more expensive Green’s function computatic

GMRES relative residual

The latter, together with the correct handling of the spati 107 ~, s
dispersion in the dielectric slab (key point in guided wav ' 1
phenomena), indicates that metasurfaces shall be analy 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 200 400 600 800 1000 1200 1400 1600 1800 2000
through the transparent IBC-EFIE of eq. (6). Number of terations

Fig. 5. Convergence of the GMRES solver for the planar Lurgehens at

7.5 GHz.
IV. NUMERICAL EXAMPLES

The previous analysis has been carried out for isotropic s
face impedances but the results can be applied to the tahs Ans
case. We remark that we have employed our formulation to!n this section, a planar lens implementing the impedance
significant anisotropies (see Sec. IV-B) without problems. Profile of a Maxwell’s fish-eye lens is considered:

f}, Isotropic surface impedance: a planar Maxwell’s fish-eye

All the numerical results presented in the following seasio L\ 2
have been obtained with the formulation of eq. (2); previous 4(%)
sections proved how this is the only formulation capable of Zy =177y —1 (12)

handling metasurface problems. {1 + (ﬁ) Qr
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where p is the distance from the centeR = 12.5¢m is _ _

. . Fig. 9. Planar Maxwell’s fish-eye lens: the vertical compangeal part) of
the raQIUS of the lens, and, is the wavenumber of the the electric field (V/m), on a plane 3.425mm above the lensuRe obtained
TM guided wave supported by the structure (a PEC-backeth the IBC model; the circumference delimits the lens oegi
dielectric slab). The lens has been discretized with 27'866
RWG functions, and analyzed at the frequency of 7.5 GHz.

The impedance profile described by (12) possesses the prgf@ht) anisotropic surface impedance printed on a grounded
erty of focusing each point on its circumference to the poiffielectric slab, as depicted in Fig. 11. The anisotropidaeg
diametrically opposed to it. The lens has been realized éndesigned such as to bend b3 an incident Gaussian beam
the same substrate of Sec. 1lI-B; it has been excited withtr@veling in the direction+i and vertically polarized (along
2—polarized point source located m = 13cm, y = 0). Fig. 9 z), at a frequency of 9 GHz. The beam-shifter is realized
shows the real part of the vertical component of the electiéth a grounded dielectric slab of thickness= 1.55mm
field, on a plane z=5mm (i.e., 3.425mm above the lens): tR8d permittivitye, = 14; on top of the dielectric slab the the
focusing property of the lens is correctly predicted by tRE| anisotropic region has a tensorial reactance, when a Gartes

model. basis is fixed, described by:
The lens has also been implemented with circular patches : :
: : . : : I Xow I Xaoy
with a square slot (possibly null) in the middle, printed on [Zs]= iXye Xy (13)

the substrate; the size of the patches and of the slots isdvari

locally to reproduce the variable impedance profile of eg).(1 With X, = —13009, X,, = —1626%, and X,y = Xy, =

The vertical component of the electric field of the actudi215¢2. Fig. 12 shows the y-component of the magnetic field
realization is reported in fig. 10: excellent agreement wigh H, = §-H on the beam-shifting surface. The Gaussian beam,
results predicted by the IBC model can be verified (detaildunched in the isotropic region, excites a surface wavéeén t

about the actual realization with patches of the lens can @eounded slab, which is refracted bg° when encountering
found in [30]). the anisotropic region.

B. Anisotropic surface impedance: a beam shifting surfaceC. Anisotropic surface impedance: an holographic antenna

In this section, a planar beam-shifter based on transforma-To prove the effectiveness of the approach, we apply it to
tion optics and on the work in [9], is studied through the IBCthe analysis of a holographic antenna based on the work in
EFIE formulation. The beam-shifter is realized with a (corf5]. The antenna is a circular disc with diamefer= 54 cm,
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Fig. 10. Planar Maxwell's fish-eye lens: the vertical comgin(real part) of - 0.00023874
the electric field (V/m), on a plane 3.425mm above the lensuRe obtained -0.00011361
with a full-wave simulation of the actual realization of tlems with patches; -0.00046595
the circumference delimits the lens region. -0.0008183
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Fig. 12. H, [A/m]: y-component of the magnetic field on the beam-shiftin
surface; the incident gaussian beam is bent8y.
Gaussian
beam s - XL JX,
—>| &7 i x_ X 40cm
E W presence of the Arlon AR 1000 dielectric substrate actually
assumed in the rest of the design. & 9.8, thicknessh =
1.575mm).
v This design has next been implemented with circular
¥ patches realizing the reactance of eq. 14 (not reported,here
>X = - and a simulation of the actual antenna has been carried out,
30em modeling each patch realizing the impedance profile; Fig. 13

shows the comparison between the two models (IBC and actual
antenna) for the directivity pattern in the plage = 0°.

Fi% 11. A bgam'Shiﬂ_ing dSU”ace is fei}izgdd_"":th a (C?”zt%so“opi_c The excellent agreement between results shows that the IBC
siace Impedance Brried on 2 grounded delecc slak WSO model can be considered as a very good approximation of the
the direction+2 and vertically polarized (along), by 13° with respect to actual behavior of the metasurface antenna. Its advansages
the x-axis. particularly evident in the design phase, where fast aiglys

of an impedance surface can be carried out without the need

corresponding to about 15at the frequencyf, = 8.425 GHz, ©f designing and drawing in the CAD model each patch

with an anisotropic impedance profile which, fixed the basi@dividually, a process which can be very time consuming, es
in cylindrical coordinates, takes the following form: pecially when an optimization is required. Note that a Valga
impedance profile intrinsically requires the single eletsen

(Z.]=iZ [Tlpp Tw] (14) to be different from each other (e.g., circular patches with
=° Nep Moo different diameters), even though it is often possible &cel
with them in a periodic (regular) arrangement. It is then cleat th
Npp = Nep = Ns m cos(K p) an optimization process during design is highly accelerate
Top = s [1 +m sin(Kp)] (15) when only the impedance profile shall be simulated.

Moo =1 [1— % sin(Kp) ] It is worth noting that a change in the impgdancg profile
does not require to recompute the system matrix, typichlly t
In the abovey; = 0.55, m = 0.3, K=27/4, andd=0.87A= most time consuming step (especially in the presence of a
31mm is the radial period of the modulation. The antennlayered medium, in which Green’s functions are non-trjyial
is discretized with 33678 triangular facets, correspogdim it is indeed sufficient to recompute the last term of eq. (6),
50'079 RWG basis functions, and analyzed with eq. (6) in thamelynx (Z -J).
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Fig. 13. Directivity pattern of the holographic antenna ircw in the xz

plane (0 = 0); the antenna is fed with a vertical pin, placed in the origin

the reference system (the center of the antenna); RHCP a@PLudfer to,
respectively, right hand and left hand circular polarizasi.

V. CONCLUSION

(7]

(8l

El
[20]

[11]

[12]

(23]

[14]

We studied different numerical discretization schemegs]

based on an integral formulation and on a surface impedance

model, for problems involving metasurfaces and guided wave
phenomena. Two of the three considered formulations suffes]
of instability problems in the cases of interest, while the
transparent model of the IBC, which only models the thin
sheet of patches, yields a stable discretization and aecurar]

results. Results proving the effectiveness of the tramspar

IBC-EFIE are shown for realistic problems.

ACKNOWLEDGMENT

(18]

[19]

The authors would like to acknowledge Ingegneria Dei

Sistemi (IDS) S.p.A. for having shared the results for thalfin

realization of the Maxwell’s fish-eye lens in section IV-Aida [2q)
of the metasurface antenna in section IV-C. The authorsavoul

like to thank D. R. Wilton, University of Houston, TX, for [21]
stimulating discussions regarding the subject of this pape |22

REFERENCES

[1] C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. OHar, K. Azad,
and A. J. Taylor, “A discussion on the interpretation andrabterization
of metafilms/metasurfaces: The two-dimensional equivadémetama-
terials,” Metamaterials vol. 3, no. 2, pp. 100 — 112, 2009.

C. Holloway, E. F. Kuester, J. Gordon, J. O’Hara, J. Boatihd D. Smith,
“An overview of the theory and applications of metasurfaclse two-

(2]

(23]

[24]

dimensional equivalents of metamaterialgitennas and Propagation [25]

Magazine, IEEEvol. 54, no. 2, pp. 10-35, 2012.

[3] A. M. Patel and A. Grbic, “A printed leaky-wave antennasbkd on a

sinusoidally-modulated reactance surfacktitennas and Propagation, [26]

IEEE Transactions gnvol. 59, no. 6, pp. 2087-2096, Jun 2011.

[4] G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Sglirleaky-

wave antennas based on modulated surface impedafingghnas and

Propagation, IEEE Transactions owol. 59, no. 12, pp. 4436-4444, [27]

Dec 2011.

[5] G. Minatti, S. Maci, P. De Vita, A. Freni, and M. SabbadirfA

circularly-polarized isoflux antenna based on anisotropetasurface,”
Antennas and Propagation, IEEE Transactions wal. 60, no. 11, pp.

4998-5009, Nov 2012.

[6] S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Néesurfing: Ad-

(28]

dressing waves on impenetrable metasurfac&afennas and Wireless [29]

Propagation Letters, IEEEvol. 10, pp. 1499-1502, 2011.

M. Bosilievac, M. Casaletti, F. Caminita, Z. Sipus, and Maci,
“Non-uniform metasurface luneburg lens antenna designténnas and
Propagation, IEEE Transactions pwrol. 60, no. 9, pp. 4065-4073, Sep
2012.

E. Martini and S. Maci, “Metasurface transformation ahg” in Trans-
formation Electromagnetics and Metamaterjdls H. Werner and D.-H.
Kwon, Eds. Springer London, 2014, pp. 83-116.

A. M. Patel, “Controlling electromagnetic surface wawgith scalar and
tensor impedance surfaces,” PhD Thesis, University of Mg, 2013.
S. Yan and J.-M. Jin, “Self-dual integral equations ébectromagnetic
scattering from IBC objects,Antennas and Propagation, IEEE Trans-
actions on vol. 61, no. 11, pp. 5533-5546, Nov 2013.

E. F. Kuester, M. Mohamed, M. Piket-May, and C. Hollow&veraged
transition conditions for electromagnetic fields at a mitefi Antennas
and Propagation, IEEE Transactions ovol. 51, no. 10, pp. 2641-2651,
Oct 2003.

C. L. Holloway, D. C. Love, E. F. Kuester, J. A. Gordondab. A. Hill,
“Use of generalized sheet transition conditions to modelemiwaves on
metasurfaces/metafilms&ntennas and Propagation, IEEE Transactions
on, vol. 60, no. 11, pp. 5173-5186, Nov 2012.

B. Stupfel and D. Poget, “Sufficient uniqueness coodgi for the
solution of the time harmonic maxwell’s equations assedatvith
surface impedance boundary conditiond,”Comput. Phys.vol. 230,
no. 12, pp. 4571-4587, Jun 2011.

M. A. Francavilla, E. Martini, F. Vipiana, S. Maci, and. 8ecchi, “Full-
wave analysis of tensorial impedance metasurfacesPrateedings of
the IEEE Int. Symp. on Antennas and Propagatiomlando, FL, 2013,
p. 230.

M. A. Francavilla, E. Martini, F. Vipiana, S. Maci, and.&ecchi,
“Numerical simulation of tensorial impedance metasudcen Pro-
ceedings of the 7th European Conference on Antennas an@atipn
Gothenburg, Sweden, 2013, pp. 3937-3938.

E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, f8ce-integral
equations for electromagnetic scattering from impenérahd penetra-
ble sheets,/Antennas and Propagation Magazine, IEBBI. 35, no. 6,
pp. 14-25, Dec 1993.

A. Glisson, M. Orman, F. Falco, and D. Koppel, “Electragmetic
scattering by an arbitrarily shaped surface with an arepatrimpedance
boundary condition,”Applied Computational Electromagnetics Society
Journal, vol. 10, no. 3, pp. 93-106, 1995.

K. Achouri, M. A. Salem, and C. Caloz, “General metaaod synthesis
based on susceptibility tensor&fXiv:1408.0273 August 2014.

B. H. Fong, J. S. Colburn, P. R. Herz, J. J. Ottusch, Diévehpiper, and
J. L. Visher, “Method for designing artificial surface impede struc-
tures characterized by an impedance tensor with complexpooents,”
Patent US 7911407 B1, 2011.

D. Sievenpiper, “Multiband tunable impedance surfadeatent US
8212739 B2, 2012.

J. A. Stratton and L. J. Chu, “Diffraction theory of efmmmagnetic
waves,”Phys. Rey.vol. 56, pp. 99-107, Jul 1939.

K. A. Michalski and J. R. Mosig, “Multilayered media gne's functions
in integral equation formulationsf{EEE Trans. Antennas Propagation
vol. 45, pp. 508-519, March 1997.

A. M. Patel and A. Grbic, “Modeling and analysis of pedtcircuit ten-
sor impedance surface#htennas and Propagation, IEEE Transactions
on, vol. 61, no. 1, pp. 211-220, Jan 2013.

T. Bertuch, F. Vipiana, and G. Vecchi, “Efficient analyf printed
structures of arbitrary shape on coated cylinders via apadtimain
mixed-potential green’s functionfEEE Transactions on Antennas and
Propagation vol. 60, no. 3, pp. 1425-1439, 2012.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagjoescattering
by surfaces of arbitrary shapelEEE Trans. Antennas Propagation
vol. 30, no. 3, pp. 409-418, May 1982.

I. Hanninen and K. Nikoskinen, “Implementation of methof moments
for numerical analysis of corrugated surfaces with impedaooundary
condition,” Antennas and Propagation, IEEE Transactions wal. 56,
no. 1, pp. 278-281, Jan 2008.

L. Medgyesi-Mitschang and J. Putnam, “Integral equatiormulations
for imperfectly conducting scatterer#ihtennas and Propagation, IEEE
Transactions onvol. 33, no. 2, pp. 206-214, Feb 1985.

A. M. Patel and A. Grbic, “Effective surface impedanckaoprinted-
circuit tensor impedance surface (PCTISMicrowave Theory and
Techniques, IEEE Transactions,orol. 61, no. 4, pp. 1403-1413, Apr
2013.

A. M. Patel and A. Grbic, “The effects of spatial disperson power
flow along a printed-circuit tensor impedance surfadsitennas and



Propagation, IEEE Transactions omol. 62, no. 3, pp. 1464-1469, Mar

2014.

[30] M. Mencagli, E. Martini, D. Gonzalez-Ovejero, and S. dVa‘Meta-
surfing by transformation electromagneticsintennas and Wireless
Propagation Letters, IEEEvol. 13, pp. 1767-1770, 2014.

Matteo Alessandro Francavilla (M'15) received

from Politecnico di Torino, Italy, respectively in
PLACE

PHOTO
HERE

lands.

been working as a researcher at the Antenna and EMC Lab (LA&Ehe
Istituto Superiore Mario Boella (ISMB), Torino, Italy. Hecientific interests
include integral equations, numerical techniques for ramds, fast solvers,
preconditioners, periodic structures and layered medidysis.

Enrica Martini  (S'98-M’02-SM’13) was born in

of Nice-Sophia Antipolis, Nice, France, under joint
supervision, in 2002.

Stefano Maci (M'92-SM'99-F'04) received the
Laurea degree (cum laude) in electronics engineering
from the University of Florence, Florence, Italy, in
1987.

PLACE He is currently Full Professor of Antennas with
PHHE??TEO the University of Siena, Siena, Italy, and Director

of the Ph.D. School of Information Engineering and
Science, which presently includes about 60 Ph.D.
students. His current research interests include high-
frequency and beam representation methods, compu-
tational electromagnetics, large phased arrays, planar
antennas, reflector antennas and feeds, metamaterials etaduriaces.

Since 2000, he has been a member of the Technical AdvisorydBoa
of 11 international conferences and a member of the Revieardof 6
international journals. He has organized 23 special sesdio international
conferences and held 10 short courses about metamateigsnnas, and
computational electromagnetics in IEEE Antennas and Rjatan Society
(AP-S) Symposia. He has been responsible for five projecigefd by the
European Union (EU). In 20042007 he was WP leader of the Awaten
Center of Excellence (ACE, FP6EU) and in 20072010 he wasnatenal
Coordinator of a 24-institution consortium of a Marie Cufietion (FP6EU).

He was the founder of the European School of Antennas (ESaAjpst-
graduate school that presently comprises 30 courses onrastepropagation,
electromagnetic theory, and computational electromézgietonducted by

the Laurea degree in Telecommunication Engineeft50 teachers coming from 15 different countries. He has laésm member
ing and Ph.D. degree in applied electromagneticef the AdCom of the IEEE Antennas and Propagation SocietfEEIEAP-

S), Associate Editor of the IEEE Transactions on AntennakRnopagation,

2007 and 2011. During 2007 he spent six month&hair of the Award Committee of IEEE AP-S, and member of thearBlo
with the Netherlands Organization for Applied Sci-of Directors of the European Association on Antennas andpdgjation
entific Research (TNO), The Hague, The Nether{EUrAAP).

Prof. Maci is presently Director of the ESoA, member of thehrécal

During 2010 he carried out part of the DoctoralAdvisory Board of the URSI Commission B, member of the GoirggrBoard
research as a visiting student at the University opf the European Science Foundation (ESF) project NewFanesnber of
Houston, TX, USA. Since January 2011, he haghe Italian Committee for Professor Promotion, Distingeid Lecturer of

the IEEE Antennas and Propagation Society, member of thenhas and
Propagation Executive Board of the Institution of Engiimegand Technology
(IET, U.K.). He has been recipient of several awards, amoihmgctwthe
EurAAP Carrier Award 2014, and other awards for best papet®nferences
and journals. His research activity is documented in 10 bcludpters, 120
papers published in international journals (among whiclo®0EEE journals)
and about 300 papers in proceedings of international cenées. His h-index
is 28, with more than 3000 citations (source Google Scholar)

Giuseppe Vecchi(M'90-SM’'07-F’10) received the

Laurea and Ph.D. (Dottorato di Ricerca) degrees
in electronic engineering from the Politecnico di
Torino, Torino, Italy, in 1985 and 1989, respectively,

the Ph.D. degree in electronics from the University

Spilimbergo (PN), Italy, in 1973. She received the PLACE with doctoral research carried out partly at Polytech-

Laurea degree (cum laude) in telecommunication PHOTO nic University (Farmingdale, NY). He was a Visit-

engineering and the Ph.D. degree in informatics and HERE ing Scientist with Polytechnic University in 1989-
PLACE telecommunications from the University of Florence, 1990, and since 1990 he is with the Department
PHHE??TEO Florence, Italy, in 1998 and 2002, respectively, and of Electronics, Politecnico di Torino, where he has

been Assistant Professor, Associate Professor (1992
2000), and Professor. He was a Visiting Scientist at

the University of Helsinki, Helsinki, Finland, in 1992, ahds been an Adjunct

She worked at the University of Florence under aFaculty in the Department of Electrical and Computer Engjimg), University
one-year research grant from the Alenia Aerospaziof lllinois at Chicago, since 1997. His current researchviiets concern

Company, Rome, ltaly, until 1999. In 2002, she was appoirResearch analytical and numerical techniques for analysis, desigh @iagnostics of
Associate at the University of Siena, Italy. In 2005, sheeieml the Hans antennas and devices, RF plasma heating, electromagetipatibility, and

Christian @rsted Postdoctoral Fellowship from the Technidniversity of

Denmark, Lyngby, Denmark, and she joined the Electromagrgystems

Section of the @rsted DTU Department until 2007. Since 2@0&, has been
a Postdoctoral Fellow with the University of Siena, Italyn& 2012, she
has also been with the start-up Wave Up Srl, Florence, Itdbr research
interests include metamaterial characterization, mef@ses, electromagnetic
scattering, antenna measurements, finite element methadsfropospheric
propagation.

imaging.



