In this paper we present F2OMP, a recovery algorithm for Compressed Sensing over finite fields. Classical recovery algorithms do not exploit the fact that a signal may belong to a finite alphabet, while we show that this information can lead to more efficient reconstruction algorithms. As an application, we use the proposed algorithm to recover sparse grayscale images, showing that performing CS operation over a finite field can outperform classical recovery algorithms from visual quality, memory occupation and complexity point of view.
Sparse image recovery using compressed sensing over finite alphabets / Bioglio, Valerio; Coluccia, Giulio; Magli, Enrico. - (2014), pp. 1287-1291. (Intervento presentato al convegno 2014 IEEE International Conference on Image Processing (ICIP)) [10.1109/ICIP.2014.7025257].
Sparse image recovery using compressed sensing over finite alphabets
BIOGLIO, VALERIO;COLUCCIA, GIULIO;MAGLI, ENRICO
2014
Abstract
In this paper we present F2OMP, a recovery algorithm for Compressed Sensing over finite fields. Classical recovery algorithms do not exploit the fact that a signal may belong to a finite alphabet, while we show that this information can lead to more efficient reconstruction algorithms. As an application, we use the proposed algorithm to recover sparse grayscale images, showing that performing CS operation over a finite field can outperform classical recovery algorithms from visual quality, memory occupation and complexity point of view.File | Dimensione | Formato | |
---|---|---|---|
FullText-BioglioICIP2014.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
303.46 kB
Formato
Adobe PDF
|
303.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2592610
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo