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SPARSE IMAGE RECOVERY USING COMPRESSED SENSING OVER FINITE ALPHABETS

Valerio Bioglio, Giulio Coluccia, Enrico Magli

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino. Italy

ABSTRACT

In this paper we present F2OMP, a recovery algorithm
for Compressed Sensing over finite fields. Classical recovery
algorithms do not exploit the fact that a signal may belong
to a finite alphabet, while we show that this information
can lead to more efficient reconstruction algorithms. As
an application, we use the proposed algorithm to recover
sparse grayscale images, showing that performing CS op-
eration over a finite field can outperform classical recovery
algorithms from visual quality, memory occupation and com-
plexity point of view.

Index Terms— Finite Fields, Compressed Sensing, Or-
thogonal Matching Pursuit, Sparse Image Recovery

1. INTRODUCTION

Compressed Sensing (CS) [1, 2] is emerging in the recent
years as a novel signal acquisition technique. Under the hy-
pothesis of sparsity, CS allows to reduce the number of mea-
surement needed to acquire a signal. This result is achieved
by linear combinations of the signal as measurements. The
signal can be retrieved solving an underdetermined system
of equations. There is a large body of literature on practical
algorithms for the reconstruction of the signal from its mea-
surements. Many of them derive from linear programming,
as Lasso [3] or Basis Pursuit (BP) [4]. Less computationally
complex techniques, as Orthogonal Matching Pursuit (OMP)
[5] and Message Passing (MP) [6], are also used, even if they
are usually less accurate.

The use in CS of techniques derived from linear codes is
emerging as promising [7, 8] since it can provide some advan-
tages over the classical CS. However, these works exploit real
field measurements, while the study of CS over finite fields
has been left aside. Namely, while sensing and measurement
quantization of a real signals may cause loss of accuracy, per-
forming operations over finite fields avoids this issue, and lin-
ear codes techniques can be exploited for efficient signal re-
covery [9, 10]. The first paper that mentions the application
of CS to finite fields is [11], where the authors develop theo-
retical error exponent results. They calculate the probability
that there exists a signal, sparser than the input signal, that
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matches the measurements, using random finite field sensing
matrices. The authors in [10] develop theoretic results for sig-
nal recovery over finite fields studing the average error of both
dense and sparse matrices through an ideal `0 recovery, prov-
ing that sparse sensing matrices can be as good as dense ones.
While the previous papers are mostly theoretical, assessing
the possibilities offered by CS over finite fields, in [9] the au-
thors suggest to use parity matrices and syndrome decoding of
algebraic codes for tracking discrete-valued time-series data.
In particular, even if [9] hints that the knowledge that a signal
belongs to a finite alphabet should be exploited in the recon-
struction process, standard CS reconstruction algorithms are
unable to exploit this information.

In this paper, we show that knowledge of the finite na-
ture of the alphabet indeed leads to more efficient reconstruc-
tion algorithms. We present a new algorithm able to enforce
sparsity on a finite field, thereby increasing the probability
of signal recovery. Moreover, we show that performing CS
operation over a field larger than the alphabet increases the
recovery performance of the system. We dub this algorithm
F2OMP (Finite Field OMP), as it can be seen as a finite ver-
sion of the classical OMP [5]. As an example application, we
apply F2OMP to sparse grayscale images and show that it can
obtain lossless reconstruction with reduced memory occupa-
tion and computational complexity. Experiments of standard
CS techniques applied to this kind of images can be found in
[12], where the image was processed row-wise, while here we
reconstruct the entire image at once.

2. COMPRESSED SENSING AND FINITE FIELDS
We denote (column-)vectors and matrices by lowercase and
uppercase boldface characters, respectively. We denote the i-
th row and the j-th column of a matrix A as ai and aj respec-
tively (the former being a row-vector). The (i, j)-th element
of a matrix A is addressed as aij . The i-th element of a vector
v is vi. F is a generic Finite Field of size q, i.e. |F| = q. We
denote as || · ||i the `i norm of a vector.

The signal x to be acquired is represented as a vector of
length n over a field and has k non-zero elements. We sup-
pose that the nonzero elements of x belong to a certain al-
phabet A. We call y the vector of length m � n that stores
the measurements of x obtained through a multiplication by
a m × n matrix A, called sensing matrix, i.e. A x = y. The
goal of CS is to recover x even if only m measurements are



Fig. 1: Evolution of the sensing matrix in F2OMP.

sensed, i.e knowing only y and A. This result can be achieved
solving the minimization problem

x̂ = argmin
x
||x||0 s.t. A x = y and x ∈ An. (1)

In the standard CS framework, the alphabet is infinite, hence
the operations are performed over R. However, ifA is finite, it
is possible to map the elements of the alphabet in a finite field
that contains a number of elements not less than the alphabet
size, i.e. q ≥ |A|, such that A ⊆ F. For this reason, in
the following we will see any finite alphabet as a subset of a
suitable finite field.

3. PROPOSED ALGORITHM

Algorithm 1 F2OMP.

1: Initialize t = 0, y(0) = y, π= [1, 2, . . . , n]T , x̂ = zeros(n)

2: while (t < m) and (y
(t)
j 6= 0 ∀j > t+ 1) do

3: while t < j ≤ n do
4: Zj ← {η ∈ F s.t. ∃i s.t. η = y

(t)
i (aij)

(−1)}
5: dj ← minα∈Zj∩A ||α−1aj − y(t)||0
6: j++
7: end while
8: g ← index of the minimizer of dj
9: swap(at+1, ag)

10: swap(πt+1, πg)
11: find h s.t. h ≥ t and aht+1 6= 0
12: swap(at+1, ah)
13: swap(y(t)t+1, y

(t)
h )

14: backsub(A, y(t), t)
15: t← t+ 1
16: end while
17: i← 1
18: while i ≤ m do
19: x̂πi ← y

(t)
i

20: i← i+ 1
21: end while

In this section we present a novel algorithm for the recov-
ery of compressed signals belonging to a finite alphabet. This
algorithm can be seen as a finite version of the classical OMP
[5], so it is called Finite Field OMP (F2OMP).

The aim of (1) is to find the sparsest solution to the system
A x = y, which has infinite solutions in R. On the contrary,
in F it has a finite (but huge) number of solutions. A selec-
tion has to be made among these solutions, and the sparsest
one has to be picked. If m linearly independent columns are
picked and the subsequent subsystem of equation is solved,
a unique solution will be found. To pick the columns that
will drive to the sparsest solution is a basic technique in CS
recovery.

Our algorithm picks columns and solves the system on the
fly by iteratively diagonalizing A. At step t, A is a partially
diagonalized matrix, as shown in Fig. 1 (a). In particular, the
first t columns of A are diagonalized. To begin with, the col-
umn of A nearest to y(t) is picked (how to find this column
will be explained later) and swapped with the (t + 1)-th one
(Fig. 1 (b)). If such a column cannot be found, the algorithm
fails. In order to enlarge the diagonalized part of A, the new
(t + 1)-th column is processed via back substitution. How-
ever, the diagonalization can be performed only if at+1

t+1 6= 0.
If at+1

t+1 = 0, a row ah, h > t+1 is found such that aht+1 6= 0,
and is swapped with the t + 1-th one (Fig. 1 (c)). A back
substitution is performed to cancel out all the nonzero ele-
ments of at+1 but the one on the diagonal. At the end of the
back substitution, at+1 has a unique nonzero element in cor-
respondence to the diagonal of A. We remark that the same
swapping and back substitution operations are applied at the
same time to the measurement vector y(t). As a result, the
diagonalized part of A has grown of 1 row and column (Fig.
1 (d)), and a new step of the algorithm can be performed. If
the algorithm converges, the first t elements of y(t) contain at
most t nonzero elements of x̂, while the last m − t elements
of y(t) are equal to zero. Hence, the iterations stop when the
last m − t elements of y(t) have been nullified. The solution
for the system of equations is obtained by assigning the first t
elements of y(t) to t elements of x̂ in the correct positions and
zero to the remaining n−t. This assignment can be performed
storing the column swap performed by algorithm, since a col-
umn swap can be seen as a swap between elements of x̂. The
pseudo-code of the algorithm is presented as Algorithm 1.

3.1. Enforcing Sparsity
Finding the column of A nearest to y(t) is the key point of the
algorithm. Working over R, OMP picks the column j mini-
mizing the distance dj = min

α∈R
(||αaj − y(t)||22), α ∈ R. It is

known that setting α = ajy(t)/||aj ||22 allows one to find the
minimizer dj for each column [13]. However, the `2 norm
is undefined over F, where the Hamming distance can be
used, instead. Even if the Hamming distance is not properly
a norm, it defines a notion of sparsity that can be exploited
in the process. The distance among columns is calculated as



dj = min
α∈F

(||αaj−y(t)||0). For this expression, no minimizing

value of α is known. A solution is to try with all the elements
of F, leading the algorithm to depend on the field size. How-
ever, the majority of the elements of F can be excluded from
the search. In fact, α can lower the value of dj only if there
exists i such that αaij − y

(t)
i = 0, i.e. when α = y

(t)
i (aij)

−1.
This is due the fact that the Hamming distance is given by
the number of nonzero elements of the difference between aj
and y(t). To lower this distance, the number of zeroed ele-
ments of the difference must be increased by α. As a conse-
quence, α has to belong to the set Zj = {η ∈ F s.t. ∃i s.t.
η = y

(t)
i (aij)

−1}. By construction, |Zj | ≤ m, and the search
for α is computationally bounded by the number of the mea-
surements. Moreover, since y can be seen as a weighted sum
of k columns of A, where the weights belongs to A, we sug-
gest an additional constraint, namely that α belong toA. As a
consequence, the final set of the possible values of α is given
by Zj ∩ A. Hence, instruction 5 of Algorithm 1 follows. We
note that classical recovery algorithms for finite fields, like
Message Passing (MP) [6], depend on the size of the field,
becoming unfeasible in large finite fields [14]. On the con-
trary, it can be shown (even if we omit to include these results
due to space limitations) that the larger the field, the better the
performance of the proposed algorithm, up to a certain size,
as theoretically proved in [11].

4. SIMULATION RESULTS
The proposed algorithm gives best results in presence of
sparse sensing matrices. The use of these matrices is emerg-
ing as an actual possibility for both real [6, 8] and finite [10]
fields. The sparse sensing matrices A are generated over
Fm×n as follows. At the beginning, the number c of nonzero
elements of A is fixed; in our experiments, we set c = 3n.
The positions of the nonzero entries of A are drawn such that
each row and each column contain approximately c/m and
c/n entries, respectively. For each of the c positions of the
nonzero elements, a value is extracted uniformly over F\{0},
while the remaining elements are set to zero. Unlike [9],
F2OMP does not impose any constraint on m and n, allowing
greater flexibility in the choice of system parameters. The
result of this process can be seen as a parity check matrix
of an irregular nonbinary LDPC code [15]. The finite fields
we work on are extensions of GF (2), i.e., q is a power of
2, hence its elements can be seen as binary vectors of length
log2 q. Moreover, the acceleration technique for MP decod-
ing of nonbinary LDPC codes [14] can be applied, and a fair
comparison with our proposal can be performed. The entries
of the real sensing matrix used for comparison are drawn
independently from a Gaussian DistributionN (0, 1/m) [13].

First, we test our algorithm with synthetically generated
signals, to study the impact of each system parameter on
the recovery performance. Then, we use it to recover sparse
grayscale images, comparing the results with the ones ob-
tained through CS recovery over R.

4.1. Synthetically generated sparse signals
Concerning the first set of experiments, the nonzero elements
of x are uniformly drawn in A. The performance metric is
the probability of recovering the correct signal. In the finite
fields, we will consider a signal as correctly recovered only
if the recovered signal and the original one are identical. In
the real field, a signal will be considered correctly recovered
if the distance between the recovered signal and the original
one is less than ε = 0.001. Each curve is the result of 1000
trials. We run multiple simulations to find the finite field size
that optimizes the performance of our algorithm. It turned
out that the recovery performance increases until a bound that
is reached around q = 216. In this case, each value of the
measurement vector can be stored in 2 bytes of memory. For
this reason, in the following the size of F will be q = 216.

To begin with, we present a comparison between real and
finite fields in the more general case of full alphabet. For the
finite field signal, we set A = F\{0}. For the real field, the
elements of A are q − 1 real numbers drawn according to
N (0, 1), and OMP algorithm [5] is used to recover the sig-
nal. In Fig. 2 the recovery probability is plotted against the
sparsity ratio k/m. As shown, the behavior of the algorithms
for the finite and the real case is similar, but the proposed
F2OMP always outperforms OMP. We must point out that in
the real field the measurements are stored as 4-bytes floating
point values, hence our proposed algorithm obtains better per-
formance with a significant memory saving.
Another option to recover the signal over a finite field is to
use MP algorithm [14]. This algorithm shares the signals and
sensing matrices with F2OMP. In Fig. 3 we show the behav-
ior of MP for different values of q. We can see that for q = 28

MP outperforms F2OMP for large values of k. However, it
must be pointed out that the computational complexity of MP
grows quadratically with the size q of the field. In fact, while
it takes few seconds to F2OMP to recover the signal, even for
q = 216, the good performance showed for q = 28 are ob-
tained running MP for several hours. A fair comparison at
q = 216 would lead to an exponential growth of the running
time, making MP impractical for large fields.

After addressing the performance of our proposed algo-
rithm in the case of complete alphabet, we now investigate
the advantage provided by the knowledge of the alphabet. In
this case, we let A ( F. OMP is unable to exploit this infor-
mation, and therefore its performance does not change. For
the competing MP [14], we developed a version of the algo-
rithm that exploits knowledge of the finite alphabet. This can
be done by zeroing the probability that an element does not
belong toA (which can be done in [14] by setting p(0)v (x) = 0
if x /∈ A). Even with this modification, the performance of
MP remains the same, proving the optimality of the original
algorithm. In Fig. 4 the recovery probability of F2OMP is
shown for various sizes of A. It is possible to notice that the
performance depends on the size of the alphabet: the smaller
the size, the better the performance. In practice, if the alpha-
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Fig. 2: Signal recovery probability
for various values of m for algorithms
OMP and F2OMP, with n = 500.
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Fig. 3: Signal recovery probability for
algorithms MP and F2OMP for various
sizes of F, with n = 500 and m = 100.
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Fig. 4: Signal recovery probability of
F2OMP for various alphabet size, with
n = 500 and m = 150.

(a) Original (b) F2OMP, m=2100 (c) OMP, m=2100

(d) OMP, m=2700 (e) OMP, m=2800 (f) OMP, m=3000

Fig. 5: Original and reconstructed images, |A| = 16

bet is known with high precision (hence its size is small), this
information can be exploited to increase the signal recovery
probability. To summarize, the knowledge of A does not im-
prove the performance of the classical recovery algorithms for
finite and real fields. On the contrary, our proposed algorithm
is indeed able to exploit this knowledge and achieves a higher
recovery probability.

4.2. Grayscale sparse images
In this section, we compare the performance of F2OMP and
OMP when applied to grayscale sparse images, like the one
depicted in Fig. 5a. This image has a size of 95 × 95 pixel
(hence n = 9025) and has a sparsity k/n of roughly 10% .
Each non zero pixel can assume a value between 1 and 255.

We compare the performance of F2OMP and OMP con-
sidering different sizes of the alphabet (|A| = 16 and 256).
Restricting the alphabet size to 16 corresponds to a quanti-
zation of pixel intensities to 16 gray levels. This operation
does not imply a visual quality loss, as shown in Fig. 5b. For
F2OMP, we set the size of the field q to 216. It must be con-
sidered that a successful reconstruction by F2OMP is always
lossless, i.e., the Mean Square Error (MSE) is equal to 0. On
the other hand, for OMP we report the reconstruction MSE.
We consider the results of the reconstruction from measure-

Table 1: Reconstruction MSE. F2OMP vs. OMP. “0” means
lossless reconstruction. “-” means unable to reconstruct

|A| = 16, k = 1026 |A| = 256, k = 1118
m F2OMP OMP F2OMP OMP

2100 0 4.02e3 - 4.08e3
2500 0 2.50e3 - 2.53e3
2700 0 1.35e3 0 1.29e3
2800 0 3.58e2 0 2.26e2
3000 0 5.96e0 0 1.88e-1

ments quantized on 16 bits per measurement (bpm), having
the same memory occupation as the q = 216 F2OMP case.
We omit to report the results of the reconstruction from un-
quantized measurements, since the performance loss due to
quantization on 16 bits is unnoticeable. The obtained results
are summarized in Table 1.

The results confirm the ones obtained with synthetically
generated data. With |A| = 16, F2OMP is able to reconstruct
with no error using only m = 2100 measurements, while for
OMP the quality of the reconstruction, depicted in Fig. 5c,
corresponds to MSE=4.02e3. To reach an acceptable visual
quality, m = 2800 measurements are needed (Fig. 5e), while
to obtain an almost lossless reconstruction, at leastm = 3000
measurements are required (Fig. 5f). On the other hand, when
all the 256 gray levels are kept, the F2OMP requires slightly
more measurements to reconstruct the image (m = 2700),
while OMP performance is not affected by the alphabet size.

5. CONCLUSIONS
In this paper we presented F2OMP, a recovery algorithm for
Compressed Sensing over finite fields. The complexity of
F2OMP does not depend on the alphabet size. We showed
that the knowledge of the nature of the alphabet can be ex-
ploited in the recovery process. In particular, if the opera-
tions are performed over a field larger than the alphabet, the
recovery performance of the algorithm improve. A compari-
son between real and finite fields CS was performed, for both
sinthetically generated data and for sparse greyscale images,
showing that F2OMP always outperforms OMP, with reduced
complexity.
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