Plug-in hybrid electric vehicles (pHEVs) could represent the stepping stone to move towards a more sustainable mobility and combine the benefits of electric powertrains with the high range capability of conventional vehicles. Nevertheless, despite the huge potential in terms of CO2 emissions reduction, the performance of such vehicles has to be deeply investigated in real world driving conditions considering also the CO2 production related to battery recharge which, on the contrary, is currently only partially considered by the European regulation to foster the diffusion of pHEVs. Therefore, this paper aims to assess, through numerical simulation, the real performance of a test case pHEV, the energy management system (EMS) of which is targeted to the minimization of its overall CO2 emissions. The paper highlights, at the same time, the relevance of the CO2 production related to the battery recharge from the power grid. Different technologies mixes used to produce the electricity required for the battery recharge are also taken into account in order to assess the influence of this parameter on the vehicle CO2 emissions. Finally, since the operating cost still represents the main driver in orienting the customer’s choice, an alternative approach for the EMS, targeted to the minimization of this variable, is also analyzed.

Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO2 Emissions and Operating Costs / Millo, Federico; Rolando, Luciano; Fuso, Rocco. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 7:7(2014), pp. 4554-4570. [10.3390/en7074554]

Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO2 Emissions and Operating Costs

MILLO, Federico;ROLANDO, LUCIANO;FUSO, ROCCO
2014

Abstract

Plug-in hybrid electric vehicles (pHEVs) could represent the stepping stone to move towards a more sustainable mobility and combine the benefits of electric powertrains with the high range capability of conventional vehicles. Nevertheless, despite the huge potential in terms of CO2 emissions reduction, the performance of such vehicles has to be deeply investigated in real world driving conditions considering also the CO2 production related to battery recharge which, on the contrary, is currently only partially considered by the European regulation to foster the diffusion of pHEVs. Therefore, this paper aims to assess, through numerical simulation, the real performance of a test case pHEV, the energy management system (EMS) of which is targeted to the minimization of its overall CO2 emissions. The paper highlights, at the same time, the relevance of the CO2 production related to the battery recharge from the power grid. Different technologies mixes used to produce the electricity required for the battery recharge are also taken into account in order to assess the influence of this parameter on the vehicle CO2 emissions. Finally, since the operating cost still represents the main driver in orienting the customer’s choice, an alternative approach for the EMS, targeted to the minimization of this variable, is also analyzed.
2014
File in questo prodotto:
File Dimensione Formato  
energies-07-04554(1).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2588162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo