Video-based navigation (VBN) is increasingly used in space applications to enable autonomous entry, descent, and landing of aircrafts. VBN algorithms require real-time performances and high computational capabilities, especially to perform features extraction and matching (FEM). In this context, field-programmable gate arrays (FPGAs) can be employed as efficient hardware accelerators. This paper proposes an improved FPGA-based FEM module. Online self-adaptation of the parameters of both the image noise filter and the features extraction algorithm is adopted to improve the algorithm robustness. Experimental results demonstrate the effectiveness of the proposed self-adaptive module. It introduces a marginal resource overhead and no timing performance degradation when compared with the reference state-of-the-art architecture.
SA-FEMIP: A Self-Adaptive Features Extractor and Matcher IP-Core Based on Partially Reconfigurable FPGAs for Space Applications / DI CARLO, Stefano; Gambardella, Giulio; Prinetto, Paolo Ernesto; Rolfo, Daniele; Trotta, Pascal. - In: IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. - ISSN 1063-8210. - STAMPA. - 23:10(2015), pp. 2198-2208. [10.1109/TVLSI.2014.2357181]
SA-FEMIP: A Self-Adaptive Features Extractor and Matcher IP-Core Based on Partially Reconfigurable FPGAs for Space Applications
DI CARLO, STEFANO;GAMBARDELLA, GIULIO;PRINETTO, Paolo Ernesto;ROLFO, DANIELE;TROTTA, PASCAL
2015
Abstract
Video-based navigation (VBN) is increasingly used in space applications to enable autonomous entry, descent, and landing of aircrafts. VBN algorithms require real-time performances and high computational capabilities, especially to perform features extraction and matching (FEM). In this context, field-programmable gate arrays (FPGAs) can be employed as efficient hardware accelerators. This paper proposes an improved FPGA-based FEM module. Online self-adaptation of the parameters of both the image noise filter and the features extraction algorithm is adopted to improve the algorithm robustness. Experimental results demonstrate the effectiveness of the proposed self-adaptive module. It introduces a marginal resource overhead and no timing performance degradation when compared with the reference state-of-the-art architecture.File | Dimensione | Formato | |
---|---|---|---|
TVLSI.2015-FEMIP.pdf
accesso aperto
Descrizione: Full paper
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri |
06913517.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2571938
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo