Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.

Positive solutions to a linearly perturbed critical growth biharmonic problem / Berchio, Elvise; F., Gazzola. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - (2011), pp. 809-823. (Intervento presentato al convegno 1st Italian-Japanese workshop on geometric properties for parabolic and elliptic PDE's tenutosi a Sendai, Giappone) [10.3934/dcdss.2011.4.809].

Positive solutions to a linearly perturbed critical growth biharmonic problem

BERCHIO, ELVISE;
2011

Abstract

Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2522490
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo