High speed trains normally use actively controlled pneumatic systems to recenter the carbody with respect to the bogie when the train negotiates a curve. Pneumatic systems are used because of their softness, which adds a little contribution to the elastic force generated by the mechanical springs of the lateral suspension system, thereby allowing the neccessary dynamic isolation between carbody and bogie. Howeve, pneumatic systems have the drawbacks of large dimensions and slow response, often accompanied by a few damped oscillations. An innovative solution was developed which makes use of hydraulic actuators providing them with artificial compliance generated by an appropriate control, hence making hydraulic actuators suitable for this application. A carbody centering system is thus obtained presenting fast response, small volume and a softness comparable to that of a pneumatic system. The optimal control law for this system was defined, the system dynamic characteristics were analyzed and a technological demonstrator was built to assess the system merits. The paper outlines the theoretical grounds for the system control, its performance and the most significant results obtained during a test campaign conducted on the technological demonstrator.
Hydraulic Actuation System with Active Control for the Lateral Suspensions of High Speed Trains / Jacazio, Giovanni; Gastaldi, Laura; Balossini, G.; Magnani, A.. - In: INTERNATIONAL JOURNAL OF HEAVY VEHICLE SYSTEMS. - ISSN 1744-232X. - STAMPA. - 20:3(2013), pp. 236-252. [10.1504/IJHVS.2013.054786]
Hydraulic Actuation System with Active Control for the Lateral Suspensions of High Speed Trains
JACAZIO, Giovanni;GASTALDI, LAURA;
2013
Abstract
High speed trains normally use actively controlled pneumatic systems to recenter the carbody with respect to the bogie when the train negotiates a curve. Pneumatic systems are used because of their softness, which adds a little contribution to the elastic force generated by the mechanical springs of the lateral suspension system, thereby allowing the neccessary dynamic isolation between carbody and bogie. Howeve, pneumatic systems have the drawbacks of large dimensions and slow response, often accompanied by a few damped oscillations. An innovative solution was developed which makes use of hydraulic actuators providing them with artificial compliance generated by an appropriate control, hence making hydraulic actuators suitable for this application. A carbody centering system is thus obtained presenting fast response, small volume and a softness comparable to that of a pneumatic system. The optimal control law for this system was defined, the system dynamic characteristics were analyzed and a technological demonstrator was built to assess the system merits. The paper outlines the theoretical grounds for the system control, its performance and the most significant results obtained during a test campaign conducted on the technological demonstrator.File | Dimensione | Formato | |
---|---|---|---|
2507561.pdf
accesso aperto
Descrizione: Borsa DIMEAS
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2507561
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo