Coarse grain (CG) molecular models have been proposed to simulate complex sys- tems with lower computational overheads and longer timescales with respect to atom- istic level models. However, their acceleration on parallel architectures such as Graphic Processing Units (GPU) presents original challenges that must be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dynamics simulator, to which we applied specic optimizations for CG models, such as dedicated data structures to handle dierent bead type interac- tions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated system features of CG models impacting the achievable speed-up and accuracy of results, using three dierent GPU architectures as case studies.

Acceleration of Coarse Grain Molecular Dynamics on GPU Architectures / Shkurti, Ardita; Mario, Orsi; Macii, Enrico; Ficarra, Elisa; Acquaviva, Andrea. - In: JOURNAL OF COMPUTATIONAL CHEMISTRY. - ISSN 0192-8651. - STAMPA. - 34:10(2013), pp. 803-818. [10.1002/jcc.23183]

Acceleration of Coarse Grain Molecular Dynamics on GPU Architectures

SHKURTI, ARDITA;MACII, Enrico;FICARRA, ELISA;ACQUAVIVA, ANDREA
2013

Abstract

Coarse grain (CG) molecular models have been proposed to simulate complex sys- tems with lower computational overheads and longer timescales with respect to atom- istic level models. However, their acceleration on parallel architectures such as Graphic Processing Units (GPU) presents original challenges that must be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dynamics simulator, to which we applied specic optimizations for CG models, such as dedicated data structures to handle dierent bead type interac- tions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated system features of CG models impacting the achievable speed-up and accuracy of results, using three dierent GPU architectures as case studies.
File in questo prodotto:
File Dimensione Formato  
jccSHKURTI.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 6.55 MB
Formato Adobe PDF
6.55 MB Adobe PDF Visualizza/Apri
Shkurti_Journal_of_Computational_Chemistry.pdf

non disponibili

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2503345
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo