This paper presents two innovative units linked together to build the main frame of a UAV Mis- sion Management System. The first unit is a Path Planner for small UAVs able to generate optimal paths in a tridimensional environment, generat- ing flyable and safe paths with the lowest com- putational effort. The second unit is the Flight Management System based on Nonlinear Model Predictive Control, that tracks the reference path and exploits a spherical camera model to avoid unpredicted obstacles along the path. The control system solves on-line (i.e. at each sampling time) a finite horizon (state horizon) open loop optimal control problem with a Genetic Algorithm. This algorithm finds the command sequence that min- imizes the tracking error with respect to the ref- erence path, driving the aircraft far from sensed obstacles and towards the desired trajectory.
An Innovative Mission Management System for Fixed-Wing UAVs / De Filippis L.; Guglieri G.; Quagliotti F.. - ELETTRONICO. - (2012), pp. 1-10. ((Intervento presentato al convegno 28th Congress of the Aeronautical Sciences tenutosi a Brisbane, Australia nel 23-28 Septembre 2012.
Titolo: | An Innovative Mission Management System for Fixed-Wing UAVs | |
Autori: | ||
Data di pubblicazione: | 2012 | |
Abstract: | This paper presents two innovative units linked together to build the main frame of a UAV Mis- si...on Management System. The first unit is a Path Planner for small UAVs able to generate optimal paths in a tridimensional environment, generat- ing flyable and safe paths with the lowest com- putational effort. The second unit is the Flight Management System based on Nonlinear Model Predictive Control, that tracks the reference path and exploits a spherical camera model to avoid unpredicted obstacles along the path. The control system solves on-line (i.e. at each sampling time) a finite horizon (state horizon) open loop optimal control problem with a Genetic Algorithm. This algorithm finds the command sequence that min- imizes the tracking error with respect to the ref- erence path, driving the aircraft far from sensed obstacles and towards the desired trajectory. | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
190.pdf | 1. Preprint / submitted version [pre- review] | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2502559