Recovering the digital input of a time-discrete linear system from its (noisy) output is a significant challenge in the fields of data transmission, deconvolution, channel equalization, and inverse modeling. A variety of algorithms have been developed for this purpose in the last decades, addressed to different models and performance/complexity requirements. In this paper, we implement a straightforward algorithm to reconstruct the binary input of a one-dimensional linear system with known probabilistic properties. Although suboptimal, this algorithm presents two main advantages: it works online (given the current output measurement, it decodes the current input bit) and has very low complexity. Moreover, we can theoretically analyze its performance: using results on convergence of probability measures, Markov processes, and Iterated Random Functions we evaluate its long-time behavior in terms of mean square error.

Binary input reconstruction for linear systems: A performance analysis / Fosson, Sophie. - In: NONLINEAR ANALYSIS. - ISSN 1751-570X. - STAMPA. - 7:1(2013), pp. 54-67. [10.1016/j.nahs.2012.07.007]

Binary input reconstruction for linear systems: A performance analysis

FOSSON, SOPHIE
2013

Abstract

Recovering the digital input of a time-discrete linear system from its (noisy) output is a significant challenge in the fields of data transmission, deconvolution, channel equalization, and inverse modeling. A variety of algorithms have been developed for this purpose in the last decades, addressed to different models and performance/complexity requirements. In this paper, we implement a straightforward algorithm to reconstruct the binary input of a one-dimensional linear system with known probabilistic properties. Although suboptimal, this algorithm presents two main advantages: it works online (given the current output measurement, it decodes the current input bit) and has very low complexity. Moreover, we can theoretically analyze its performance: using results on convergence of probability measures, Markov processes, and Iterated Random Functions we evaluate its long-time behavior in terms of mean square error.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2502469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo