Exhaust Gas Recirculation (EGR) is extensively employed in diesel combustion engines to achieve NOx emission targets. The EGR is often cooled in order to increase the effectiveness of the strategy, even though this leads to a further undesired impact on PM and HC. Experimental tests were carried out on a diesel engine at a dynamometer rig under steady-state speed and load working conditions that were considered relevant for the New European Driving Cycle. Two different shell and tube-type EGR coolers were compared, in terms of the pressure and temperature of the exhaust and intake lines, to evaluate thermal effectiveness and induced pumping losses. All the relevant engine parameters were acquired along EGR trade-off curves, in order to perform a detailed comparison of the two coolers. The effect of intake throttling operation on increasing the EGR ratio was also investigated. A purposely designed aging procedure was run in order to characterize the deterioration of the thermal effectiveness and verify whether clogging of the EGR cooler occurred. The EGR mass flow-rate dependence on the pressure and temperature upstream of the turbine as well as the pressure downstream of the EGR control valve was modeled by means of the expression for convergent nozzles. The restricted flow-area at the valve-seat passage and the discharge coefficient were accurately determined as functions of the valve lift.

Analysis of the EGR system performance in modern diesel engines / D'Ambrosio, Stefano; Ferrari, Alessandro; Spessa, Ezio. - ELETTRONICO. - (2012), pp. 495-509. (Intervento presentato al convegno ASME 2012 Internal Combustion Engine Division Spring Technical Conference, ICES 2012 tenutosi a Torino (Italy) nel May 6-9, 2012) [10.1115/ICES2012-81202].

Analysis of the EGR system performance in modern diesel engines

D'AMBROSIO, Stefano;FERRARI, Alessandro;SPESSA, EZIO
2012

Abstract

Exhaust Gas Recirculation (EGR) is extensively employed in diesel combustion engines to achieve NOx emission targets. The EGR is often cooled in order to increase the effectiveness of the strategy, even though this leads to a further undesired impact on PM and HC. Experimental tests were carried out on a diesel engine at a dynamometer rig under steady-state speed and load working conditions that were considered relevant for the New European Driving Cycle. Two different shell and tube-type EGR coolers were compared, in terms of the pressure and temperature of the exhaust and intake lines, to evaluate thermal effectiveness and induced pumping losses. All the relevant engine parameters were acquired along EGR trade-off curves, in order to perform a detailed comparison of the two coolers. The effect of intake throttling operation on increasing the EGR ratio was also investigated. A purposely designed aging procedure was run in order to characterize the deterioration of the thermal effectiveness and verify whether clogging of the EGR cooler occurred. The EGR mass flow-rate dependence on the pressure and temperature upstream of the turbine as well as the pressure downstream of the EGR control valve was modeled by means of the expression for convergent nozzles. The restricted flow-area at the valve-seat passage and the discharge coefficient were accurately determined as functions of the valve lift.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2500919
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo