We study the existence of contours which evolve retaining their shapes under the second Goldstein-Petrich flow. We present a proof of the existence, for each integer n >= 2, of a 1-parameter family of non-congruent Goldstein-Petrich contours of R(2) with symmetry group of order n. Explicit algorithms to compute and visualize the contours and their evolution are given.
Congruence curves of the Goldstein-Petrich flows / Musso, Emilio. - STAMPA. - 542:(2011), pp. 99-113. (Intervento presentato al convegno Conference on Harmonic map Fest in Honour of John C. Woods 60th Birthday tenutosi a Cagliari (Italy) nel SEP 07-10, 2009) [10.1090/conm/542].
Congruence curves of the Goldstein-Petrich flows
MUSSO, EMILIO
2011
Abstract
We study the existence of contours which evolve retaining their shapes under the second Goldstein-Petrich flow. We present a proof of the existence, for each integer n >= 2, of a 1-parameter family of non-congruent Goldstein-Petrich contours of R(2) with symmetry group of order n. Explicit algorithms to compute and visualize the contours and their evolution are given.File | Dimensione | Formato | |
---|---|---|---|
musso.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
856.86 kB
Formato
Adobe PDF
|
856.86 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2460552
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo