We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity. We prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.
Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting / Degiovanni, M.; Lancelotti, Sergio; Perera, K.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 12:3(2010), pp. 475-486. [10.1142/S0219199710003890]
Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting
LANCELOTTI, SERGIO;
2010
Abstract
We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity. We prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.File | Dimensione | Formato | |
---|---|---|---|
abstract.pdf
accesso aperto
Tipologia:
Abstract
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
18.79 kB
Formato
Adobe PDF
|
18.79 kB | Adobe PDF | Visualizza/Apri |
Nontrivial solutions etc. author version.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
97.34 kB
Formato
Adobe PDF
|
97.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2380847
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo