POLITECNICO DI TORINO Repository ISTITUZIONALE

Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting

Original

Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting / Degiovanni, M.; Lancelotti, Sergio; Perera, K.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 12:3(2010), pp. 475-486. [10.1142/S0219199710003890]

Availability: This version is available at: 11583/2380847 since:

Publisher: World Scientific Publishing

Published DOI:10.1142/S0219199710003890

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Nontrivial Solutions of *p*-Superlinear *p*-Laplacian Problems via a Cohomological Local Splitting

Marco Degiovanni

Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Via dei Musei 41, 25121 Brescia, Italy *m.degiovanni@dmf.unicatt.it*

Sergio Lancelotti

Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy sergio.lancelotti@polito.it

Kanishka Perera

Department of Mathematical Sciences Florida Institute of Technology 150 West University Blvd, Melbourne, FL 32901, USA kperera@fit.edu

Author's version

Published in: Communications in Contemporary Mathematics 12 (2010), 475-486 Doi: 10.1142/S0219199710003890

Abstract

We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity. We prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.

Keywords: p-Laplace equations; nontrivial solutions; Morse theory.

Mathematics Subject Classification 2010: 58E05, 35J65

1 Introduction

Consider the boundary value problem

$$\begin{cases} -\Delta_p \, u = \lambda \, V \, |u|^{p-2} \, u + g(x, u) & \text{in } \Omega \,, \\ u = 0 & \text{on } \partial \Omega \,, \end{cases}$$
(1.1)

where Ω is a bounded open subset of \mathbb{R}^n , $n \geq 1$, $\Delta_p u = \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right)$ is the *p*-Laplacian of $u, p \in]1, \infty[, \lambda \in \mathbb{R}$ is a parameter, $V \in L^{\infty}(\Omega)$ and g is a Carathéodory function on $\Omega \times \mathbb{R}$ satisfying the following conditions:

(g1) there exist C > 0 and

$$p < q < \begin{cases} p^* := \frac{np}{n-p} & \text{if } p < n \\ \infty & \text{if } p \ge n \end{cases}$$

such that

$$|g(x,s)| \le C(|s|^{q-1}+1);$$

(g2) we have

$$g(x,s) = o(|s|^{p-1})$$
 as $s \to 0$, uniformly in x ;

(g3) there exist $\mu > p$ and R > 0 such that

$$0 < \mu G(x,s) := \int_0^s g(x,t) \, dt \le s \, g(x,s), \quad \text{whenever } |s| \ge R \, .$$

In particular, $g(x, 0) \equiv 0$ and hence we have the trivial solution u = 0, and we seek another.

In the case p = 2, the existence of a nontrivial solution u for (1.1) can be obtained via the Linking Theorem (see e.g. Rabinowitz [21, Theorem 5.16]). More precisely, let us assume, without loss of generality, that $\lambda \ge 0$. If the set

$$\mathcal{M} = \left\{ u \in W_0^{1,p}(\Omega) : \int_{\Omega} V |u|^p \, dx = 1 \right\}$$

is empty or if $\mathcal{M} \neq \emptyset$ and

$$\lambda < \lambda_1 := \min \left\{ \int_{\Omega} |\nabla u|^p \, dx : \quad u \in \mathcal{M} \right\} \,,$$

then the existence of a nontrivial solution can be proved, without any further assumption, by the Mountain Pass Theorem for any p > 1 (see Ambrosetti and Rabinowitz [1] for the case p = 2 and Dinca, Jebelean and Mawhin [10] for the case $p \neq 2$). On the contrary, if $\mathcal{M} \neq \emptyset$ and $\lambda \geq \lambda_1$, the classical proof is based on the fact that each eigenvalue λ_k of $-\Delta_2$ induces a suitable direct sum decomposition of $W_0^{1,2}(\Omega)$. On the other hand, if $p \neq 2$, such decompositions are not available. Nevertheless, a linking argument over cones, rather than over linear subspaces, has been developed for $p \neq 2$, when λ is close to λ_1 by Fan and Z. Li [12] and for any λ by Degiovanni and Lancelotti [9]. In such a way, the mentioned result of Rabinowitz has been completely extended to the case $p \neq 2$.

When $\lambda \geq \lambda_1$, in all these results a global sign condition like $G(x, s) \geq 0$ needs to be imposed, in order to recognize the linking geometry. However, such an assumption can be relaxed by means of Morse theory or nonstandard linking constructions.

When p = 2, in Benci [2, Theorem 7.14] it is show that, if a nonresonance condition at the origin is satisfied, the existence of a nontrivial solution can be obtained without any further assumption. On the other hand, S.J. Li and Willem [15, Theorem 4] are able to treat the resonant case under a local sign condition on G. Related results are also contained in J.Q. Liu and S.J. Li [14]. The approach based on Morse theory has been extended to the case $p \neq 2$ by S. Liu [16] when λ is close to λ_1 and by Perera [19] when λ does not belong to the spectrum of the *p*-Laplace operator.

Our purpose is to develop this approach, in order to remove any condition on λ and require only a local sign condition on G. Our result is the following

Theorem 1.1. Let us suppose that assumptions $(g_1) - (g_3)$ hold and let $V \in L^{\infty}(\Omega)$. Then, for every $\lambda \in \mathbb{R}$, problem (1.1) has a nontrivial solution $u \in W_0^{1,p}(\Omega)$ in each of the following cases:

- (a) there exists $\delta > 0$ such that $G(x, s) \ge 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \le \delta$;
- (b) there exists $\delta > 0$ such that $G(x, s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$.

This is a natural extension to the case $p \neq 2$ of the mentioned result of S.J. Li and Willem, although the argument is based there on a nonstandard linking construction and here on Morse theory.

In the next section we recall and prove some preliminary facts, while in section 3 we prove the main result in a more general setting. In the last section we recover Theorem 1.1 as a particular case.

2 Preliminaries

Let Φ be a C^1 -functional defined on a real Banach space W. We denote by B_ρ and S_ρ the closed ball and sphere of center 0 and radius ρ . We also denote by H the Alexander-Spanier cohomology with \mathbb{Z}_2 -coefficients (see Spanier [22]). For a symmetric subset X of $W \setminus \{0\}$, i(X) denotes its \mathbb{Z}_2 -cohomological index (see Fadell and Rabinowitz [11]). The following notion has been introduced, in a slightly different form, by Perera, Agarwal, and O'Regan [20] and is in turn a variant of the homological local linking of Perera [18]. It should also be compared with the local linking of S.J. Li and Willem [15].

Definition 2.1. We say that Φ has a cohomological local splitting near 0 in dimension $k < \infty$, if there are two symmetric cones W_{-}, W_{+} in W and $\rho > 0$ such that

$$W_{-} \cap W_{+} = \{0\}, \qquad i(W_{-} \setminus \{0\}) = i(W \setminus W_{+}) = k$$
 (2.1)

and

$$\begin{cases} \Phi(u) \le \Phi(0) & \text{for every } u \in B_{\rho} \cap W_{-}, \\ \Phi(u) \ge \Phi(0) & \text{for every } u \in B_{\rho} \cap W_{+}. \end{cases}$$

$$(2.2)$$

As we will see, in such a case 0 must be a critical point of Φ .

Recall that the cohomological critical groups of Φ at a point $u \in W$ are defined by

$$C^{q}(\Phi, u) = H^{q}(\Phi^{c}, \Phi^{c} \setminus \{u\}), \quad q \ge 0,$$

where $c = \Phi(u)$ is the corresponding value and Φ^c is the closed sublevel set $\{w \in W : \Phi(w) \leq c\}$ (see, e.g., Chang [3] or Mawhin and Willem [17]). By the excision property, we have

$$C^{q}(\Phi, u) \approx H^{q}(\Phi^{c} \cap U, \Phi^{c} \cap U \setminus \{u\})$$

for every neighborhood U of u. Therefore, the concept has local nature. Moreover, it is well known that all critical groups are trivial, if u is not a critical point of Φ (see e.g. Corvellec [5, Proposition 3.4]). Finally, the next result shows a stability property and is a particular case of Corvellec and Hantoute [7, Theorem 5.2] (see also Benci [2, Theorem 5.16]). The case in which W is a Hilbert space and Φ is of class C^2 can be also found in Chang [3, Theorem I.5.6] and in Mawhin and Willem [17, Theorem 8.8].

Theorem 2.2. Let $\Phi_t : W \longrightarrow \mathbb{R}$, $t \in [0,1]$, be a family of functionals of class C^1 . Assume that there exists $\rho > 0$ such that each Φ_t satisfies the Palais-Smale condition over B_{ρ} and has no critical point in B_{ρ} other than 0. Suppose also that the map $\{t \mapsto \Phi_t\}$ is continuous from [0,1] into $C^1(B_{\rho})$. Then $C^q(\Phi_t, 0)$ is independent of t.

The cohomological local splitting allows to give an estimate of the critical groups, also in the absence of a direct sum decomposition.

Proposition 2.3. If Φ has a cohomological local splitting near 0 in dimension k, then 0 is a critical point of Φ . Moreover, if 0 is an isolated critical point of Φ , then we have $C^k(\Phi, 0) \neq 0$.

This proposition is a variant of a result of Perera, Agarwal, and O'Regan [20]. We need the following lemma from Degiovanni and Lancelotti (see [9, Theorem 2.7] and also Cingolani and Degiovanni [4, Theorem 3.6]), which establishes a connection between equivariant index and nonequivariant co-homology.

Lemma 2.4. If X is a symmetric subset of $W \setminus \{0\}$ with $k = i(X) < \infty$ and A is a symmetric subset of X with i(A) = k, then the homomorphism $i^* : H^k(W, X) \to H^k(W, A)$, induced by the inclusion $i : (W, A) \subseteq (W, X)$, is nontrivial.

Proof of Proposition 2.3. It is enough to prove that, if 0 does not accumulate critical points of Φ , then $C^k(\Phi, 0) \neq 0$. Therefore assume, without loss of generality, that Φ has no critical point u with $0 < ||u|| \le \rho$. Let $c = \Phi(0)$.

There exists a deformation $\eta: W \times [0,1] \longrightarrow W$ such that

$$\begin{split} \Phi(\eta(u,t)) &< \Phi(u) & \text{if } \Phi'(u) \neq 0 \text{ and } t > 0 \,, \\ \eta(u,t) &= u & \text{otherwise }, \end{split}$$

(see e.g. Benci [2, Theorem 5.5] or Corvellec [6]). Let $0 < r \leq \rho$ be such that $\eta(B_r \times [0,r]) \subseteq B_{\rho}$. Since $B_r \cap W_-$ is contractible and $S_r \cap W_-$ is a deformation retract of $W_- \setminus \{0\}$, from Lemma 2.4 and (2.1) we deduce that the homomorphism

$$i^*: H^k(W, B_\rho \setminus W_+) \longrightarrow H^k(B_r \cap W_-, S_r \cap W_-),$$

induced by the inclusion $i : (B_r \cap W_-, S_r \cap W_-) \subseteq (W, B_\rho \setminus W_+)$, is nontrivial. On the other hand, since (2.2) implies

$$B_r \cap W_- \subseteq \Phi^c \cap B_r, \ S_r \cap W_- \subseteq \Phi^c \cap B_r \setminus \{0\}, \ \eta \left(\Phi^c \cap B_r \setminus \{0\}, r\right) \subseteq B_\rho \setminus W_+,$$

we may also consider the composition

$$H^{k}(W, B_{\rho} \setminus W_{+}) \xrightarrow{\eta(\cdot, r)^{*}} H^{k}(\Phi^{c} \cap B_{r}, \Phi^{c} \cap B_{r} \setminus \{0\}) \xrightarrow{j^{*}} H^{k}(B_{r} \cap W_{-}, S_{r} \cap W_{-})$$

where $j : (B_r \cap W_-, S_r \cap W_-) \subseteq (\Phi^c \cap B_r, \Phi^c \cap B_r \setminus \{0\})$ is the inclusion. Again (2.2) yields

 $\eta\left(\left(S_r \cap W_{-}\right) \times [0,r]\right) \subseteq B_{\rho} \setminus W_{+},$

so that $\eta(\cdot, r) \circ j$ is homotopic to *i*. Therefore $j^* \circ \eta(\cdot, r)^* = i^*$ is nontrivial, which in turn implies that $H^k(\Phi^c \cap B_r, \Phi^c \cap B_r \setminus \{0\}) \neq 0$. \Box

Now, let us recall a situation in which one can build two symmetric cones satisfying (2.1). Let Ω be a bounded open subset of \mathbb{R}^n , let 1 andlet

$$\mathcal{V}(\Omega) := \begin{cases} \bigcup_{r > n/p} L^r(\Omega) & \text{if } p \le n, \\ L^1(\Omega) & \text{if } p > n. \end{cases}$$

Take $V \in \mathcal{V}(\Omega)$ and consider the eigenvalue problem

$$\begin{cases} -\Delta_p u = \lambda V |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(2.3)

We refer the reader to Cuesta [8] and Szulkin and Willem [23] for general properties concerning (2.3).

Now, assume that $\{x \in \Omega : V(x) > 0\}$ has positive measure, denote by \mathcal{F} the class of symmetric subsets of

$$\mathcal{M} = \left\{ u \in W_0^{1,p}(\Omega) : \int_{\Omega} V |u|^p \, dx = 1 \right\}$$

and set

$$\lambda_k = \inf_{\substack{M \in \mathcal{F} \\ i(M) \ge k}} \sup_{u \in M} \int_{\Omega} |\nabla u|^p \, dx, \quad k \ge 1.$$
(2.4)

Then $\lambda_k \nearrow +\infty$ are eigenvalues of (2.3) and the following result holds (see Degiovanni and Lancelotti [9, Theorem 3.2]).

Proposition 2.5. Let $k \ge 1$ be such that $\lambda_k < \lambda_{k+1}$ and let

$$W_{-} = \left\{ u \in W_{0}^{1,p}(\Omega) : \int_{\Omega} |\nabla u|^{p} dx \leq \lambda_{k} \int_{\Omega} V |u|^{p} dx \right\},$$
$$W_{+} = \left\{ u \in W_{0}^{1,p}(\Omega) : \int_{\Omega} |\nabla u|^{p} dx \geq \lambda_{k+1} \int_{\Omega} V |u|^{p} dx \right\}.$$

Then W_{-}, W_{+} are two symmetric cones in $W_{0}^{1,p}(\Omega)$ satisfying (2.1).

3 The main result

Let Ω be a bounded open subset of \mathbb{R}^n , let $1 , let <math>V \in \mathcal{V}(\Omega)$ and let $g : \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ be a Carathéodory function satisfying the following assumptions:

(g1') we have that

for every $\varepsilon > 0$ there exists $a_{\varepsilon} \in \mathcal{V}(\Omega)$ such that

$$|g(x,s)| \le a_{\varepsilon}(x) |s|^{p-1} + \varepsilon |s|^{p^*-1}, \qquad \text{if } p < n;$$

there exist $a \in \mathcal{V}(\Omega)$, C > 0 and q > p such that

$$|g(x,s)| \le a(x)|s|^{p-1} + C|s|^{q-1},$$
 if $p = n;$

for every S > 0 there exists $a_S \in \mathcal{V}(\Omega)$ such that

$$|g(x,s)| \le a_S(x)|s|^{p-1}$$
 whenever $|s| \le S$, if $p > n$;

$$(g2') \text{ for a.e. } x \in \Omega, \text{ we have } \lim_{s \to 0} \frac{G(x,s)}{|s|^p} = 0 \text{ and } \lim_{|s| \to \infty} \frac{G(x,s)}{|s|^p} = +\infty, \text{ where } G(x,s) = \int_0^s g(x,t) \, dt;$$

(g3') there exist $\mu > p, \gamma_0 \in L^1(\Omega)$ and $\gamma_1 \in \mathcal{V}(\Omega)$ such that

$$-\gamma_0(x) - \gamma_1(x)|s|^p \le \mu G(x,s) \le sg(x,s) + \gamma_0(x) + \gamma_1(x)|s|^p$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$.

In order to study the quasilinear problem

$$\begin{cases} -\Delta_p u = \lambda V |u|^{p-2} u + g(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(3.1)

let us define a functional $\Phi: W_0^{1,p}(\Omega) \longrightarrow \mathbb{R}$ of class C^1 by

$$\Phi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx - \frac{\lambda}{p} \int_{\Omega} V|u|^p \, dx - \int_{\Omega} G(x, u) \, dx$$

and set $||u|| = (\int_{\Omega} |\nabla u|^p dx)^{1/p}$ for every $u \in W_0^{1,p}(\Omega)$. Recall also that, for every $\gamma \in \mathcal{V}(\Omega)$, the map $\{u \mapsto \gamma |u|^p\}$ is weak-to-strong sequentially continuous from $W_0^{1,p}(\Omega)$ into $L^1(\Omega)$.

Lemma 3.1. The following facts hold:

(a) for every $c \in \mathbb{R}$, we have

$$\limsup_{\substack{\|u\|\to\infty\\\Phi(u)\leq c}}\frac{\Phi'(u)u-p\,\Phi(u)}{\|u\|^p}<0;$$

(b) for every $u \in W_0^{1,p}(\Omega) \setminus \{0\}$, we have

$$\lim_{|t|\to\infty}\frac{\Phi(tu)}{|t|^p}=-\infty\,.$$

Proof. (a) Let $c \in \mathbb{R}$. By contradiction, let $d_k \to 0$ and let (u_k) be a sequence in Φ^c such that $||u_k|| \to \infty$ and

$$\Phi'(u_k)u_k - p \Phi(u_k) \ge -d_k ||u_k||^p$$
 for every $k \in \mathbb{N}$.

If we set $v_k = u_k/||u_k||$, up to a subsequence (v_k) is convergent to some $v \in W_0^{1,p}(\Omega)$ weakly and a.e. in Ω .

From (g3') it follows that

$$- d_k ||u_k||^p \le \Phi'(u_k)u_k - p \Phi(u_k) = \int_{\Omega} (pG(x, u_k) - u_k g(x, u_k)) dx$$

=
$$\int_{\Omega} (\mu G(x, u_k) - u_k g(x, u_k)) dx - (\mu - p) \int_{\Omega} G(x, u_k) dx$$

$$\le \int_{\Omega} (\gamma_0 + \gamma_1 |u_k|^p) dx - (\mu - p) \int_{\Omega} G(x, u_k) dx ,$$

whence

$$(\mu - p) \int_{\Omega} G(x, u_k) \, dx \le d_k \|u_k\|^p + \int_{\Omega} (\gamma_0 + \gamma_1 |u_k|^p) \, dx \,. \tag{3.2}$$

Therefore we have

$$\limsup_{k} \frac{\int_{\Omega} G(x, u_k) \, dx}{\|u_k\|^p} < +\infty \,. \tag{3.3}$$

On the other hand, (g3') also yields

$$\frac{G(x, u_k)}{\|u_k\|^p} + \frac{\gamma_0}{\|u_k\|^p} \ge -\gamma_1 |v_k|^p,$$

hence, by the (generalized) Fatou lemma and (3.3),

$$\int_{\Omega} \left(\liminf_{k} \frac{G(x, u_k)}{\|u_k\|^p} \right) \, dx \le \liminf_{k} \frac{\int_{\Omega} G(x, u_k) \, dx}{\|u_k\|^p} < +\infty \, .$$

Since by (g2') we have

$$\lim_{k} \frac{G(x, u_{k})}{\|u_{k}\|^{p}} = \lim_{k} \left(\frac{G(x, u_{k})}{|u_{k}|^{p}} |v_{k}|^{p} \right) = +\infty \quad \text{where } v \neq 0,$$

we deduce that v = 0 a.e. in Ω .

Formula (3.2) can also be rewritten as

$$\left(\frac{\mu}{p}-1\right) \int_{\Omega} |\nabla u_k|^p \, dx \le (\mu-p)\Phi(u_k) + d_k ||u_k||^p \\ + \int_{\Omega} \gamma_0 \, dx + \int_{\Omega} \left[\left(\frac{\mu}{p}-1\right)V + \gamma_1\right] |u_k|^p \, dx \,,$$

namely

$$\left(\frac{\mu}{p} - 1\right) \le d_k + (\mu - p) \frac{\Phi(u_k)}{\|u_k\|^p} + \frac{\int_{\Omega} \gamma_0 \, dx}{\|u_k\|^p} + \int_{\Omega} \left[\left(\frac{\mu}{p} - 1\right) V + \gamma_1 \right] |v_k|^p \, dx \, .$$

Going to the limit as $k \to \infty$, we get $\frac{\mu}{p} - 1 \le 0$ and a contradiction follows. (b) Since by (g3')

$$\frac{G(x,tu)}{|t|^p} + \frac{\gamma_0}{|t|^p} \ge -\gamma_1 |u|^p \,,$$

applying as before Fatou's lemma, the assertion follows.

Lemma 3.2. There exists a < 0 such that Φ^a is contractible in itself.

Proof. By (a) of Lemma 3.1, there exists $b \in \mathbb{R}$ such that

 $\Phi'(u)u - p \Phi(u) \le b$ for every $u \in \Phi^0$.

In particular, there exists a < 0 such that

$$\Phi'(u)u < 0 \qquad \text{for every } u \in \Phi^a \,. \tag{3.4}$$

If we set, taking into account (b) of Lemma 3.1,

$$t(u) = \min\left\{t \ge 1 : \Phi(tu) \le a\right\}$$

from (3.4) we deduce that the function $\{u \mapsto t(u)\}$ is continuous. Then r(u) = t(u)u is a retraction of $W_0^{1,p}(\Omega) \setminus \{0\}$ onto Φ^a . Since $W_0^{1,p}(\Omega) \setminus \{0\}$ is contractible in itself, the same is true for Φ^a .

Lemma 3.3. Assume that 0 is an isolated critical point of Φ . Then the following facts hold:

(a) if there exists $\delta > 0$ such that $G(x,s) \ge 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \le \delta$, we have $C^q(\Phi, 0) \ne 0$ for

$$q = i\left(\left\{u \in W_0^{1,p}(\Omega) \setminus \{0\}: \int_{\Omega} |\nabla u|^p \, dx \le \lambda \int_{\Omega} V \, |u|^p \, dx\right\}\right);$$

(b) if there exists $\delta > 0$ such that $G(x,s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$, we have $C^q(\Phi, 0) \neq 0$ for

$$q = i\left(\left\{u \in W_0^{1,p}(\Omega) : \int_{\Omega} |\nabla u|^p \, dx < \lambda \int_{\Omega} V \, |u|^p \, dx\right\}\right).$$

Proof. By replacing (λ, V) with $(-\lambda, -V)$ if necessary, we may assume that $\lambda \geq 0$. Let $\vartheta : \mathbb{R} \longrightarrow [0, 1]$ be a C^{∞} -function such that $\vartheta(s) = 0$ for $|s| \leq \delta/2$ and $\vartheta(s) = 1$ for $|s| \geq \delta$. For every $t \in [0, 1]$, define

 $G_t(x,s) = G(x, (1 - t\vartheta(s))s)$

and $\Phi_t: W_0^{1,p}(\Omega) \longrightarrow \mathbb{R}$ by

$$\Phi_t(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p \, dx - \frac{\lambda}{p} \int_{\Omega} V|u|^p \, dx - \int_{\Omega} G_t(x, u) \, dx \, .$$

From (g1') it follows that each Φ_t satisfies the Palais-Smale condition over every bounded subset of $W_0^{1,p}(\Omega)$ (see also [9, Proposition 4.3]). Moreover the map $\{t \mapsto \Phi_t\}$ is continuous from [0, 1] into $C^1(B)$ for every bounded subset B of $W_0^{1,p}(\Omega)$. We claim that there exists $\rho > 0$ such that each Φ_t has no critical point in B_ρ other than 0. By contradiction, let (t_j) be a sequence in [0, 1] and (u_j) a sequence convergent to 0 with $\Phi'_{t_j}(u_j) = 0$ and $u_j \neq 0$. Then the same regularity argument of Guedda and Veron [13, Propositions 1.2 and 1.3] shows that (u_j) is convergent to 0 also in $L^{\infty}(\Omega)$. Therefore we have $\Phi'(u_j) = 0$ eventually as $j \to \infty$. Since 0 is an isolated critical point of Φ , a contradiction follows. From Theorem 2.2 we deduce that $C^q(\Phi, 0) \approx C^q(\Phi_1, 0)$ for any $q \ge 0$.

Observe also that

$$\int_{\Omega} G_1(x, u) \, dx = \mathrm{o}(\|u\|^p) \text{ as } \|u\| \to 0$$
(3.5)

(see, e.g., [9, Proposition 4.3]).

In case (a), we have $G_1(x,s) \ge 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$. If the set $\{x \in \Omega : V(x) > 0\}$ has positive measure and $\lambda \ge \lambda_1$, where (λ_k) is the sequence defined in (2.4), take $k \ge 1$ such that $\lambda_k \le \lambda < \lambda_{k+1}$ and define W_-, W_+ as in Proposition 2.5. Otherwise, let $W_- = \{0\}$ and $W_+ = W_0^{1,p}(\Omega)$. In any case, W_-, W_+ are two symmetric cones in $W_0^{1,p}(\Omega)$ satisfying (2.1) and

$$i(W_{-} \setminus \{0\}) = i\left(\left\{u \in W_{0}^{1,p}(\Omega) \setminus \{0\}: \int_{\Omega} |\nabla u|^{p} dx \leq \lambda \int_{\Omega} V |u|^{p} dx\right\}\right), \quad (3.6)$$

$$\int_{\Omega} |\nabla u|^p \, dx \le \lambda \int_{\Omega} V |u|^p \, dx \qquad \forall u \in W_- \,, \tag{3.7}$$

$$\exists \sigma \in]0,1[: (1-\sigma) \int_{\Omega} |\nabla u|^p \, dx \ge \lambda \int_{\Omega} V |u|^p \, dx \qquad \forall u \in W_+.$$
(3.8)

From (3.7) and the sign information on G_1 , it follows

$$\Phi_1(u) \le 0 \quad \text{for every } u \in W_- \text{ with } ||u|| \le \rho$$
(3.9)

for any $\rho > 0$. On the other hand, combining (3.5) and (3.8), we get

$$\Phi_1(u) \ge 0 \quad \text{for every } u \in W_+ \text{ with } ||u|| \le \rho$$
(3.10)

provided that ρ is sufficiently small. Therefore also (2.2) is satisfied and the assertion follows from Proposition 2.3 and (3.6).

In case (b), we have $G_1(x,s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$. If the set $\{x \in \Omega : V(x) > 0\}$ has positive measure and $\lambda > \lambda_1$, take now $k \geq 1$ such that $\lambda_k < \lambda \leq \lambda_{k+1}$ and define W_-, W_+ as in Proposition 2.5. Otherwise, let $W_- = \{0\}$ and $W_+ = W_0^{1,p}(\Omega)$. In any case, W_-, W_+ are two symmetric cones in $W_0^{1,p}(\Omega)$ satisfying (2.1) and

$$i(W_0^{1,p}(\Omega) \setminus W_+) = i\left(\left\{u \in W_0^{1,p}(\Omega) : \int_{\Omega} |\nabla u|^p \, dx < \lambda \int_{\Omega} V \, |u|^p \, dx\right\}\right), \quad (3.11)$$

$$\exists \sigma \in]0,1[: (1+\sigma) \int_{\Omega} |\nabla u|^p \, dx \le \lambda \int_{\Omega} V |u|^p \, dx \qquad \forall u \in W_- \,, \quad (3.12)$$

$$\int_{\Omega} |\nabla u|^p \, dx \ge \lambda \int_{\Omega} V |u|^p \, dx \qquad \forall u \in W_+ \,. \tag{3.13}$$

Combining (3.5) with (3.12), we get again (3.9) if ρ is sufficiently small. On the other hand, from (3.13) and the sign information on G_1 we deduce (3.10) for any $\rho > 0$. Then (2.2) is satisfied and the assertion follows from Proposition 2.3 and (3.11).

Now we can prove the main result of the section.

Theorem 3.4. Let us suppose that assumptions (g1') - (g3') hold and let $V \in \mathcal{V}(\Omega)$. Then, for every $\lambda \in \mathbb{R}$, problem (3.1) has a nontrivial solution $u \in W_0^{1,p}(\Omega)$ in each of the following cases:

- (a) there exists $\delta > 0$ such that $G(x, s) \ge 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \le \delta$,
- (b) there exists $\delta > 0$ such that $G(x, s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$.

Proof. A standard argument shows that Φ satisfies the Palais-Smale compactness condition (see, e.g., [9, Proposition 4.3]).

Suppose, for a contradiction, that the origin is the only critical point of Φ . By Lemma 3.2 there exists a < 0 such that Φ^a is contractible in itself. On the other hand, by the second deformation lemma (see e.g. Chang [3] or Mawhin and Willem [17]), Φ^0 is a deformation retract of W and Φ^a is a deformation retract of $\Phi^0 \setminus \{0\}$, so

$$C^{q}(\Phi, 0) = H^{q}(\Phi^{0}, \Phi^{0} \setminus \{0\}) \approx H^{q}(W, \Phi^{a}) = 0 \quad \text{for every } q \ge 0.$$

By Lemma 3.3 a contradiction follows.

For the sake of completeness, let us state a simple extension of a result of Perera [19], which can be proved by the same argument.

Theorem 3.5. Let us suppose that assumptions (g1') - (g3') hold, let $V \in \mathcal{V}(\Omega)$ and let $\lambda \geq 0$. If the set $\{x \in \Omega : V(x) > 0\}$ has positive measure, assume also that $\lambda \notin \{\lambda_k : k \geq 1\}$, where (λ_k) is the sequence defined in (2.4).

Then problem (3.1) has a nontrivial solution $u \in W_0^{1,p}(\Omega)$.

Thus, the extra assumption on λ is compensated by the fact that there is no sign condition on G. Observe that the union of Theorems 3.4 and 3.5 provides a complete extension to the case $p \neq 2$ of S.J. Li and Willem [15, Theorem 4].

4 Proof of Theorem 1.1

Since $V \in L^{\infty}(\Omega)$, we have $V \in \mathcal{V}(\Omega)$. It is also standard that assumptions (g1) - (g3) imply (g1') - (g3') (see e.g. Degiovanni and Lancelotti [9]). Then the assertion follows from Theorem 3.4.

References

- Antonio Ambrosetti and Paul H. Rabinowitz. Dual variational methods in critical point theory and applications. J. Functional Analysis, 14:349– 381, 1973.
- [2] Vieri Benci. A new approach to the Morse-Conley theory and some applications. Ann. Mat. Pura Appl. (4), 158:231–305, 1991.
- [3] Kung-ching Chang. Infinite-dimensional Morse theory and multiple solution problems, volume 6 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1993.
- [4] Silvia Cingolani and Marco Degiovanni. Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity. Comm. Partial Differential Equations, 30(7-9):1191–1203, 2005.
- [5] Jean-Noël Corvellec. Morse theory for continuous functionals. J. Math. Anal. Appl., 196(3):1050–1072, 1995.

- [6] Jean-Noël Corvellec. On the second deformation lemma. Topol. Methods Nonlinear Anal., 17(1):55–66, 2001.
- [7] Jean-Noël Corvellec and Abderrahim Hantoute. Homotopical stability of isolated critical points of continuous functionals. in *Calculus of variations*, nonsmooth analysis and related topics, Set-Valued Anal., 10(2-3):143–164, 2002.
- [8] Mabel Cuesta. Eigenvalue problems for the *p*-Laplacian with indefinite weights. *Electron. J. Differential Equations*, pages No. 33, 9 pp. (electronic), 2001.
- [9] Marco Degiovanni and Sergio Lancelotti. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):907–919, 2007.
- [10] George Dinca, Petru Jebelean, and Jean Mawhin. Variational and topological methods for Dirichlet problems with p-Laplacian. Port. Math. (N.S.), 58(3):339–378, 2001.
- [11] Edward R. Fadell and Paul H. Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. *Invent. Math.*, 45(2):139–174, 1978.
- [12] Xianling Fan and Zhancun Li. Linking and existence results for perturbations of the *p*-Laplacian. Nonlinear Anal., 42(8):1413–1420, 2000.
- [13] Mohammed Guedda and Laurent Véron. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., 13(8):879–902, 1989.
- [14] Jia Quan Liu and Shu Jie Li. An existence theorem for multiple critical points and its application *Kexue Tongbao (Chinese)*, 29(17):1025–1027, 1984.
- [15] Shu Jie Li and Michel Willem. Applications of local linking to critical point theory. J. Math. Anal. Appl., 189(1):6–32, 1995.
- [16] Shibo Liu. Existence of solutions to a superlinear p-Laplacian equation. Electron. J. Differential Equations, pages No. 66, 6 pp. (electronic), 2001.

- [17] Jean Mawhin and Michel Willem. Critical point theory and Hamiltonian systems, volume 74 of Applied Mathematical Sciences, Springer-Verlag, New York, 1989.
- [18] Kanishka Perera. Homological local linking. Abstr. Appl. Anal., 3(1-2):181–189, 1998.
- [19] Kanishka Perera. Nontrivial solutions of p-superlinear p-Laplacian problems. Appl. Anal., 82(9):883–888, 2003.
- [20] Kanishka Perera, Ravi P. Agarwal, and Donal O'Regan. Morse theory and *p*-laplacian type problems. preprint.
- [21] Paul H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations, volume 65 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, R.I., 1986.
- [22] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York, 1994. Corrected reprint of the 1966 original.
- [23] Andrzej Szulkin and Michel Willem. Eigenvalue problems with indefinite weight. *Studia Math.*, 135(2):191–201, 1999.