POLITECNICO DI TORINO

Repository ISTITUZIONALE

Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting

Original
Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting / Degiovanni, M.; Lancelotti, Sergio; Perera, K.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. 12:3(2010), pp. 475-486. [10.1142/S0219199710003890]

Availability:

This version is available at: $11583 / 2380847$ since
Publisher:
World Scientific Publishing

Published
DOI:10.1142/S0219199710003890

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

Nontrivial Solutions of p-Superlinear p-Laplacian Problems via a Cohomological Local Splitting

Marco Degiovanni
Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Via dei Musei 41, 25121 Brescia, Italy
m.degiovanni@dmf.unicatt.it

Sergio Lancelotti
Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
sergio.lancelotti@polito.it

Kanishka Perera

Department of Mathematical Sciences
Florida Institute of Technology
150 West University Blvd, Melbourne, FL 32901, USA
kperera@fit.edu

Author's version
Published in: Communications in Contemporary Mathematics 12 (2010), 475-486
Doi: 10.1142/S0219199710003890

Abstract

We consider a quasilinear equation, involving the p-Laplace operator, with a p-superlinear nonlinearity. We prove the existence of a nontrivial solution, also when there is no mountain pass geometry, without imposing a global sign condition. Techniques of Morse theory are employed.

Keywords: p-Laplace equations; nontrivial solutions; Morse theory.
Mathematics Subject Classification 2010: 58E05, 35J65

1 Introduction

Consider the boundary value problem

$$
\left\{\begin{align*}
-\Delta_{p} u & =\lambda V|u|^{p-2} u+g(x, u) & & \text { in } \Omega \tag{1.1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where Ω is a bounded open subset of $\mathbb{R}^{n}, n \geq 1, \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian of $u, p \in] 1, \infty\left[, \lambda \in \mathbb{R}\right.$ is a parameter, $V \in L^{\infty}(\Omega)$ and g is a Carathéodory function on $\Omega \times \mathbb{R}$ satisfying the following conditions:
(g1) there exist $C>0$ and

$$
p<q< \begin{cases}p^{*}:=\frac{n p}{n-p} & \text { if } p<n \\ \infty & \text { if } p \geq n\end{cases}
$$

such that

$$
|g(x, s)| \leq C\left(|s|^{q-1}+1\right)
$$

(g2) we have

$$
g(x, s)=\mathrm{o}\left(|s|^{p-1}\right) \text { as } s \rightarrow 0, \text { uniformly in } x
$$

(g3) there exist $\mu>p$ and $R>0$ such that

$$
0<\mu G(x, s):=\int_{0}^{s} g(x, t) d t \leq s g(x, s), \quad \text { whenever }|s| \geq R
$$

In particular, $g(x, 0) \equiv 0$ and hence we have the trivial solution $u=0$, and we seek another.

In the case $p=2$, the existence of a nontrivial solution u for (1.1) can be obtained via the Linking Theorem (see e.g. Rabinowitz [21, Theorem 5.16]). More precisely, let us assume, without loss of generality, that $\lambda \geq 0$. If the set

$$
\mathcal{M}=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega} V|u|^{p} d x=1\right\}
$$

is empty or if $\mathcal{M} \neq \emptyset$ and

$$
\lambda<\lambda_{1}:=\min \left\{\int_{\Omega}|\nabla u|^{p} d x: \quad u \in \mathcal{M}\right\}
$$

then the existence of a nontrivial solution can be proved, without any further assumption, by the Mountain Pass Theorem for any $p>1$ (see Ambrosetti and Rabinowitz [1] for the case $p=2$ and Dinca, Jebelean and Mawhin [10] for the case $p \neq 2$). On the contrary, if $\mathcal{M} \neq \emptyset$ and $\lambda \geq \lambda_{1}$, the classical proof is based on the fact that each eigenvalue λ_{k} of $-\Delta_{2}$ induces a suitable direct sum decomposition of $W_{0}^{1,2}(\Omega)$. On the other hand, if $p \neq 2$, such decompositions are not available. Nevertheless, a linking argument over cones, rather than over linear subspaces, has been developed for $p \neq 2$, when λ is close to λ_{1} by Fan and Z. Li [12] and for any λ by Degiovanni and Lancelotti [9]. In such a way, the mentioned result of Rabinowitz has been completely extended to the case $p \neq 2$.

When $\lambda \geq \lambda_{1}$, in all these results a global sign condition like $G(x, s) \geq 0$ needs to be imposed, in order to recognize the linking geometry. However, such an assumption can be relaxed by means of Morse theory or nonstandard linking constructions.

When $p=2$, in Benci [2, Theorem 7.14] it is show that, if a nonresonance condition at the origin is satisfied, the existence of a nontrivial solution can be obtained without any further assumption. On the other hand, S.J. Li and Willem [15, Theorem 4] are able to treat the resonant case under a local sign condition on G. Related results are also contained in J.Q. Liu and S.J. Li [14].

The approach based on Morse theory has been extended to the case $p \neq 2$ by S. Liu [16] when λ is close to λ_{1} and by Perera [19] when λ does not belong to the spectrum of the p-Laplace operator.

Our purpose is to develop this approach, in order to remove any condition on λ and require only a local sign condition on G. Our result is the following

Theorem 1.1. Let us suppose that assumptions ($g 1$) - ($g 3$) hold and let $V \in L^{\infty}(\Omega)$. Then, for every $\lambda \in \mathbb{R}$, problem (1.1) has a nontrivial solution $u \in W_{0}^{1, p}(\Omega)$ in each of the following cases:
(a) there exists $\delta>0$ such that $G(x, s) \geq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$;
(b) there exists $\delta>0$ such that $G(x, s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$.

This is a natural extension to the case $p \neq 2$ of the mentioned result of S.J. Li and Willem, although the argument is based there on a nonstandard linking construction and here on Morse theory.

In the next section we recall and prove some preliminary facts, while in section 3 we prove the main result in a more general setting. In the last section we recover Theorem 1.1 as a particular case.

2 Preliminaries

Let Φ be a C^{1}-functional defined on a real Banach space W. We denote by B_{ρ} and S_{ρ} the closed ball and sphere of center 0 and radius ρ. We also denote by H the Alexander-Spanier cohomology with \mathbb{Z}_{2}-coefficients (see Spanier [22]). For a symmetric subset X of $W \backslash\{0\}, i(X)$ denotes its \mathbb{Z}_{2}-cohomological index (see Fadell and Rabinowitz [11]). The following notion has been introduced, in a slightly different form, by Perera, Agarwal, and O'Regan [20] and is in turn a variant of the homological local linking of Perera [18]. It should also be compared with the local linking of S.J. Li and Willem [15].

Definition 2.1. We say that Φ has a cohomological local splitting near 0 in dimension $k<\infty$, if there are two symmetric cones W_{-}, W_{+}in W and $\rho>0$ such that

$$
\begin{equation*}
W_{-} \cap W_{+}=\{0\}, \quad i\left(W_{-} \backslash\{0\}\right)=i\left(W \backslash W_{+}\right)=k \tag{2.1}
\end{equation*}
$$

and

$$
\begin{cases}\Phi(u) \leq \Phi(0) & \text { for every } u \in B_{\rho} \cap W_{-} \tag{2.2}\\ \Phi(u) \geq \Phi(0) & \text { for every } u \in B_{\rho} \cap W_{+}\end{cases}
$$

As we will see, in such a case 0 must be a critical point of Φ.
Recall that the cohomological critical groups of Φ at a point $u \in W$ are defined by

$$
C^{q}(\Phi, u)=H^{q}\left(\Phi^{c}, \Phi^{c} \backslash\{u\}\right), \quad q \geq 0
$$

where $c=\Phi(u)$ is the corresponding value and Φ^{c} is the closed sublevel set $\{w \in W: \Phi(w) \leq c\}$ (see, e.g., Chang [3] or Mawhin and Willem [17]). By the excision property, we have

$$
C^{q}(\Phi, u) \approx H^{q}\left(\Phi^{c} \cap U, \Phi^{c} \cap U \backslash\{u\}\right)
$$

for every neighborhood U of u. Therefore, the concept has local nature. Moreover, it is well known that all critical groups are trivial, if u is not a critical point of Φ (see e.g. Corvellec [5, Proposition 3.4]). Finally, the next result shows a stability property and is a particular case of Corvellec and Hantoute [7, Theorem 5.2] (see also Benci [2, Theorem 5.16]). The case in which W is a Hilbert space and Φ is of class C^{2} can be also found in Chang [3, Theorem I.5.6] and in Mawhin and Willem [17, Theorem 8.8].

Theorem 2.2. Let $\Phi_{t}: W \longrightarrow \mathbb{R}, t \in[0,1]$, be a family of functionals of class C^{1}. Assume that there exists $\rho>0$ such that each Φ_{t} satisfies the Palais-Smale condition over B_{ρ} and has no critical point in B_{ρ} other than 0. Suppose also that the map $\left\{t \mapsto \Phi_{t}\right\}$ is continuous from $[0,1]$ into $C^{1}\left(B_{\rho}\right)$.

Then $C^{q}\left(\Phi_{t}, 0\right)$ is independent of t.
The cohomological local splitting allows to give an estimate of the critical groups, also in the absence of a direct sum decomposition.

Proposition 2.3. If Φ has a cohomological local splitting near 0 in dimension k, then 0 is a critical point of Φ. Moreover, if 0 is an isolated critical point of Φ, then we have $C^{k}(\Phi, 0) \neq 0$.

This proposition is a variant of a result of Perera, Agarwal, and O'Regan [20]. We need the following lemma from Degiovanni and Lancelotti (see [9, Theorem 2.7] and also Cingolani and Degiovanni [4, Theorem 3.6]), which establishes a connection between equivariant index and nonequivariant cohomology.

Lemma 2.4. If X is a symmetric subset of $W \backslash\{0\}$ with $k=i(X)<\infty$ and A is a symmetric subset of X with $i(A)=k$, then the homomorphism $i^{*}: H^{k}(W, X) \rightarrow H^{k}(W, A)$, induced by the inclusion $i:(W, A) \subseteq(W, X)$, is nontrivial.

Proof of Proposition 2.3. It is enough to prove that, if 0 does not accumulate critical points of Φ, then $C^{k}(\Phi, 0) \neq 0$. Therefore assume, without loss of generality, that Φ has no critical point u with $0<\|u\| \leq \rho$. Let $c=\Phi(0)$.

There exists a deformation $\eta: W \times[0,1] \longrightarrow W$ such that

$$
\begin{array}{ll}
\Phi(\eta(u, t))<\Phi(u) & \text { if } \Phi^{\prime}(u) \neq 0 \text { and } t>0 \\
\eta(u, t)=u & \text { otherwise }
\end{array}
$$

(see e.g. Benci [2, Theorem 5.5] or Corvellec [6]). Let $0<r \leq \rho$ be such that $\eta\left(B_{r} \times[0, r]\right) \subseteq B_{\rho}$. Since $B_{r} \cap W_{-}$is contractible and $S_{r} \cap W_{-}$is a deformation retract of $W_{-} \backslash\{0\}$, from Lemma 2.4 and (2.1) we deduce that the homomorphism

$$
i^{*}: H^{k}\left(W, B_{\rho} \backslash W_{+}\right) \longrightarrow H^{k}\left(B_{r} \cap W_{-}, S_{r} \cap W_{-}\right)
$$

induced by the inclusion $i:\left(B_{r} \cap W_{-}, S_{r} \cap W_{-}\right) \subseteq\left(W, B_{\rho} \backslash W_{+}\right)$, is nontrivial. On the other hand, since (2.2) implies

$$
B_{r} \cap W_{-} \subseteq \Phi^{c} \cap B_{r}, S_{r} \cap W_{-} \subseteq \Phi^{c} \cap B_{r} \backslash\{0\}, \eta\left(\Phi^{c} \cap B_{r} \backslash\{0\}, r\right) \subseteq B_{\rho} \backslash W_{+},
$$

we may also consider the composition

$$
H^{k}\left(W, B_{\rho} \backslash W_{+}\right) \xrightarrow{\eta(\cdot, r)^{*}} H^{k}\left(\Phi^{c} \cap B_{r}, \Phi^{c} \cap B_{r} \backslash\{0\}\right) \xrightarrow{j^{*}} H^{k}\left(B_{r} \cap W_{-}, S_{r} \cap W_{-}\right)
$$

where $j:\left(B_{r} \cap W_{-}, S_{r} \cap W_{-}\right) \subseteq\left(\Phi^{c} \cap B_{r}, \Phi^{c} \cap B_{r} \backslash\{0\}\right)$ is the inclusion. Again (2.2) yields

$$
\eta\left(\left(S_{r} \cap W_{-}\right) \times[0, r]\right) \subseteq B_{\rho} \backslash W_{+},
$$

so that $\eta(\cdot, r) \circ j$ is homotopic to i. Therefore $j^{*} \circ \eta(\cdot, r)^{*}=i^{*}$ is nontrivial, which in turn implies that $H^{k}\left(\Phi^{c} \cap B_{r}, \Phi^{c} \cap B_{r} \backslash\{0\}\right) \neq 0$.

Now, let us recall a situation in which one can build two symmetric cones satisfying (2.1). Let Ω be a bounded open subset of \mathbb{R}^{n}, let $1<p<\infty$ and let

$$
\mathcal{V}(\Omega):= \begin{cases}\bigcup_{r>n / p} L^{r}(\Omega) & \text { if } p \leq n \\ L^{1}(\Omega) & \text { if } p>n\end{cases}
$$

Take $V \in \mathcal{V}(\Omega)$ and consider the eigenvalue problem

$$
\left\{\begin{align*}
-\Delta_{p} u & =\lambda V|u|^{p-2} u & & \text { in } \Omega \tag{2.3}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

We refer the reader to Cuesta [8] and Szulkin and Willem [23] for general properties concerning (2.3).

Now, assume that $\{x \in \Omega: V(x)>0\}$ has positive measure, denote by \mathcal{F} the class of symmetric subsets of

$$
\mathcal{M}=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega} V|u|^{p} d x=1\right\}
$$

and set

$$
\begin{equation*}
\lambda_{k}=\inf _{\substack{M \in \mathcal{F} \\ i(M) \geq k}} \sup _{u \in M} \int_{\Omega}|\nabla u|^{p} d x, \quad k \geq 1 \tag{2.4}
\end{equation*}
$$

Then $\lambda_{k} \nearrow+\infty$ are eigenvalues of (2.3) and the following result holds (see Degiovanni and Lancelotti (9, Theorem 3.2]).

Proposition 2.5. Let $k \geq 1$ be such that $\lambda_{k}<\lambda_{k+1}$ and let

$$
\begin{aligned}
& W_{-}=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega}|\nabla u|^{p} d x \leq \lambda_{k} \int_{\Omega} V|u|^{p} d x\right\} \\
& W_{+}=\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega}|\nabla u|^{p} d x \geq \lambda_{k+1} \int_{\Omega} V|u|^{p} d x\right\} .
\end{aligned}
$$

Then W_{-}, W_{+}are two symmetric cones in $W_{0}^{1, p}(\Omega)$ satisfying (2.1).

3 The main result

Let Ω be a bounded open subset of \mathbb{R}^{n}, let $1<p<\infty$, let $V \in \mathcal{V}(\Omega)$ and let $g: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ be a Carathéodory function satisfying the following assumptions:
($g 1^{\prime}$) we have that
for every $\varepsilon>0$ there exists $a_{\varepsilon} \in \mathcal{V}(\Omega)$ such that

$$
|g(x, s)| \leq a_{\varepsilon}(x)|s|^{p-1}+\varepsilon|s|^{p^{*}-1}, \quad \text { if } p<n
$$

there exist $a \in \mathcal{V}(\Omega), C>0$ and $q>p$ such that

$$
|g(x, s)| \leq a(x)|s|^{p-1}+C|s|^{q-1}, \quad \text { if } p=n
$$

for every $S>0$ there exists $a_{S} \in \mathcal{V}(\Omega)$ such that

$$
|g(x, s)| \leq a_{S}(x)|s|^{p-1} \text { whenever }|s| \leq S, \quad \text { if } p>n ;
$$

($g 2^{\prime}$) for a.e. $x \in \Omega$, we have $\lim _{s \rightarrow 0} \frac{G(x, s)}{|s|^{p}}=0$ and $\lim _{|s| \rightarrow \infty} \frac{G(x, s)}{|s|^{p}}=+\infty$, where

$$
G(x, s)=\int_{0}^{s} g(x, t) d t
$$

($g 3^{\prime}$) there exist $\mu>p, \gamma_{0} \in L^{1}(\Omega)$ and $\gamma_{1} \in \mathcal{V}(\Omega)$ such that

$$
-\gamma_{0}(x)-\gamma_{1}(x)|s|^{p} \leq \mu G(x, s) \leq s g(x, s)+\gamma_{0}(x)+\gamma_{1}(x)|s|^{p}
$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$.
In order to study the quasilinear problem

$$
\begin{cases}-\Delta_{p} u=\lambda V|u|^{p-2} u+g(x, u) & \text { in } \Omega \tag{3.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

let us define a functional $\Phi: W_{0}^{1, p}(\Omega) \longrightarrow \mathbb{R}$ of class C^{1} by

$$
\Phi(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{\lambda}{p} \int_{\Omega} V|u|^{p} d x-\int_{\Omega} G(x, u) d x
$$

and set $\|u\|=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p}$ for every $u \in W_{0}^{1, p}(\Omega)$. Recall also that, for every $\gamma \in \mathcal{V}(\Omega)$, the map $\left\{u \mapsto \gamma|u|^{p}\right\}$ is weak-to-strong sequentially continuous from $W_{0}^{1, p}(\Omega)$ into $L^{1}(\Omega)$.

Lemma 3.1. The following facts hold:
(a) for every $c \in \mathbb{R}$, we have

$$
\limsup _{\substack{\|u\| \rightarrow \infty \\ \Phi(u) \leq c}} \frac{\Phi^{\prime}(u) u-p \Phi(u)}{\|u\|^{p}}<0
$$

(b) for every $u \in W_{0}^{1, p}(\Omega) \backslash\{0\}$, we have

$$
\lim _{|t| \rightarrow \infty} \frac{\Phi(t u)}{|t|^{p}}=-\infty
$$

Proof. (a) Let $c \in \mathbb{R}$. By contradiction, let $d_{k} \rightarrow 0$ and let (u_{k}) be a sequence in Φ^{c} such that $\left\|u_{k}\right\| \rightarrow \infty$ and

$$
\Phi^{\prime}\left(u_{k}\right) u_{k}-p \Phi\left(u_{k}\right) \geq-d_{k}\left\|u_{k}\right\|^{p} \quad \text { for every } k \in \mathbb{N}
$$

If we set $v_{k}=u_{k} /\left\|u_{k}\right\|$, up to a subsequence $\left(v_{k}\right)$ is convergent to some $v \in W_{0}^{1, p}(\Omega)$ weakly and a.e. in Ω.

From $\left(g 3^{\prime}\right)$ it follows that

$$
\begin{aligned}
& -d_{k}\left\|u_{k}\right\|^{p} \leq \Phi^{\prime}\left(u_{k}\right) u_{k}-p \Phi\left(u_{k}\right)=\int_{\Omega}\left(p G\left(x, u_{k}\right)-u_{k} g\left(x, u_{k}\right)\right) d x \\
& =\int_{\Omega}\left(\mu G\left(x, u_{k}\right)-u_{k} g\left(x, u_{k}\right)\right) d x-(\mu-p) \int_{\Omega} G\left(x, u_{k}\right) d x \\
& \leq \int_{\Omega}\left(\gamma_{0}+\gamma_{1}\left|u_{k}\right|^{p}\right) d x-(\mu-p) \int_{\Omega} G\left(x, u_{k}\right) d x
\end{aligned}
$$

whence

$$
\begin{equation*}
(\mu-p) \int_{\Omega} G\left(x, u_{k}\right) d x \leq d_{k}\left\|u_{k}\right\|^{p}+\int_{\Omega}\left(\gamma_{0}+\gamma_{1}\left|u_{k}\right|^{p}\right) d x . \tag{3.2}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\limsup _{k} \frac{\int_{\Omega} G\left(x, u_{k}\right) d x}{\left\|u_{k}\right\|^{p}}<+\infty \tag{3.3}
\end{equation*}
$$

On the other hand, $\left(g 3^{\prime}\right)$ also yields

$$
\frac{G\left(x, u_{k}\right)}{\left\|u_{k}\right\|^{p}}+\frac{\gamma_{0}}{\left\|u_{k}\right\|^{p}} \geq-\gamma_{1}\left|v_{k}\right|^{p}
$$

hence, by the (generalized) Fatou lemma and (3.3),

$$
\int_{\Omega}\left(\liminf _{k} \frac{G\left(x, u_{k}\right)}{\left\|u_{k}\right\|^{p}}\right) d x \leq \liminf _{k} \frac{\int_{\Omega} G\left(x, u_{k}\right) d x}{\left\|u_{k}\right\|^{p}}<+\infty .
$$

Since by $\left(g 2^{\prime}\right)$ we have

$$
\lim _{k} \frac{G\left(x, u_{k}\right)}{\left\|u_{k}\right\|^{p}}=\lim _{k}\left(\frac{G\left(x, u_{k}\right)}{\left|u_{k}\right|^{p}}\left|v_{k}\right|^{p}\right)=+\infty \quad \text { where } v \neq 0
$$

we deduce that $v=0$ a.e. in Ω.
Formula (3.2) can also be rewritten as

$$
\begin{aligned}
\left(\frac{\mu}{p}-1\right) \int_{\Omega}\left|\nabla u_{k}\right|^{p} d x \leq & (\mu-p) \Phi\left(u_{k}\right)+d_{k}\left\|u_{k}\right\|^{p} \\
& +\int_{\Omega} \gamma_{0} d x+\int_{\Omega}\left[\left(\frac{\mu}{p}-1\right) V+\gamma_{1}\right]\left|u_{k}\right|^{p} d x
\end{aligned}
$$

namely

$$
\left(\frac{\mu}{p}-1\right) \leq d_{k}+(\mu-p) \frac{\Phi\left(u_{k}\right)}{\left\|u_{k}\right\|^{p}}+\frac{\int_{\Omega} \gamma_{0} d x}{\left\|u_{k}\right\|^{p}}+\int_{\Omega}\left[\left(\frac{\mu}{p}-1\right) V+\gamma_{1}\right]\left|v_{k}\right|^{p} d x
$$

Going to the limit as $k \rightarrow \infty$, we get $\frac{\mu}{p}-1 \leq 0$ and a contradiction follows.
(b) Since by $\left(g 3^{\prime}\right)$

$$
\frac{G(x, t u)}{|t|^{p}}+\frac{\gamma_{0}}{|t|^{p}} \geq-\gamma_{1}|u|^{p}
$$

applying as before Fatou's lemma, the assertion follows.
Lemma 3.2. There exists $a<0$ such that Φ^{a} is contractible in itself.
Proof. By (a) of Lemma 3.1, there exists $b \in \mathbb{R}$ such that

$$
\Phi^{\prime}(u) u-p \Phi(u) \leq b \quad \text { for every } u \in \Phi^{0}
$$

In particular, there exists $a<0$ such that

$$
\begin{equation*}
\Phi^{\prime}(u) u<0 \quad \text { for every } u \in \Phi^{a} . \tag{3.4}
\end{equation*}
$$

If we set, taking into account (b) of Lemma 3.1,

$$
t(u)=\min \{t \geq 1: \Phi(t u) \leq a\}
$$

from (3.4) we deduce that the function $\{u \mapsto t(u)\}$ is continuous. Then $r(u)=t(u) u$ is a retraction of $W_{0}^{1, p}(\Omega) \backslash\{0\}$ onto Φ^{a}. Since $W_{0}^{1, p}(\Omega) \backslash\{0\}$ is contractible in itself, the same is true for Φ^{a}.

Lemma 3.3. Assume that 0 is an isolated critical point of Φ. Then the following facts hold:
(a) if there exists $\delta>0$ such that $G(x, s) \geq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$, we have $C^{q}(\Phi, 0) \neq 0$ for

$$
q=i\left(\left\{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}: \int_{\Omega}|\nabla u|^{p} d x \leq \lambda \int_{\Omega} V|u|^{p} d x\right\}\right)
$$

(b) if there exists $\delta>0$ such that $G(x, s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$, we have $C^{q}(\Phi, 0) \neq 0$ for

$$
q=i\left(\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega}|\nabla u|^{p} d x<\lambda \int_{\Omega} V|u|^{p} d x\right\}\right)
$$

Proof. By replacing (λ, V) with $(-\lambda,-V)$ if necessary, we may assume that $\lambda \geq 0$. Let $\vartheta: \mathbb{R} \longrightarrow[0,1]$ be a C^{∞}-function such that $\vartheta(s)=0$ for $|s| \leq \delta / 2$ and $\vartheta(s)=1$ for $|s| \geq \delta$. For every $t \in[0,1]$, define

$$
G_{t}(x, s)=G(x,(1-t \vartheta(s)) s)
$$

and $\Phi_{t}: W_{0}^{1, p}(\Omega) \longrightarrow \mathbb{R}$ by

$$
\Phi_{t}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{\lambda}{p} \int_{\Omega} V|u|^{p} d x-\int_{\Omega} G_{t}(x, u) d x .
$$

From $\left(g 1^{\prime}\right)$ it follows that each Φ_{t} satisfies the Palais-Smale condition over every bounded subset of $W_{0}^{1, p}(\Omega)$ (see also [9, Proposition 4.3]). Moreover the map $\left\{t \mapsto \Phi_{t}\right\}$ is continuous from $[0,1]$ into $C^{1}(B)$ for every bounded subset B of $W_{0}^{1, p}(\Omega)$. We claim that there exists $\rho>0$ such that each Φ_{t} has no critical point in B_{ρ} other than 0 . By contradiction, let $\left(t_{j}\right)$ be a sequence in $[0,1]$ and $\left(u_{j}\right)$ a sequence convergent to 0 with $\Phi_{t_{j}}^{\prime}\left(u_{j}\right)=0$
and $u_{j} \neq 0$. Then the same regularity argument of Guedda and Veron [13, Propositions 1.2 and 1.3] shows that $\left(u_{j}\right)$ is convergent to 0 also in $L^{\infty}(\Omega)$. Therefore we have $\Phi^{\prime}\left(u_{j}\right)=0$ eventually as $j \rightarrow \infty$. Since 0 is an isolated critical point of Φ, a contradiction follows. From Theorem 2.2 we deduce that $C^{q}(\Phi, 0) \approx C^{q}\left(\Phi_{1}, 0\right)$ for any $q \geq 0$.

Observe also that

$$
\begin{equation*}
\int_{\Omega} G_{1}(x, u) d x=\mathrm{o}\left(\|u\|^{p}\right) \text { as }\|u\| \rightarrow 0 \tag{3.5}
\end{equation*}
$$

(see, e.g., [9, Proposition 4.3]).
In case (a), we have $G_{1}(x, s) \geq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$. If the set $\{x \in \Omega: V(x)>0\}$ has positive measure and $\lambda \geq \lambda_{1}$, where $\left(\lambda_{k}\right)$ is the sequence defined in (2.4), take $k \geq 1$ such that $\lambda_{k} \leq \lambda<\lambda_{k+1}$ and define W_{-}, W_{+}as in Proposition 2.5. Otherwise, let $W_{-}=\{0\}$ and $W_{+}=W_{0}^{1, p}(\Omega)$. In any case, W_{-}, W_{+}are two symmetric cones in $W_{0}^{1, p}(\Omega)$ satisfying (2.1) and

$$
\begin{align*}
& i\left(W_{-} \backslash\{0\}\right) \\
& \quad=i\left(\left\{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}: \int_{\Omega}|\nabla u|^{p} d x \leq \lambda \int_{\Omega} V|u|^{p} d x\right\}\right) \tag{3.6}\\
& \int_{\Omega}|\nabla u|^{p} d x \leq \lambda \int_{\Omega} V|u|^{p} d x \quad \forall u \in W_{-}, \tag{3.7}\\
& \exists \sigma \in] 0,1\left[:(1-\sigma) \int_{\Omega}|\nabla u|^{p} d x \geq \lambda \int_{\Omega} V|u|^{p} d x \quad \forall u \in W_{+}\right. \tag{3.8}
\end{align*}
$$

From (3.7) and the sign information on G_{1}, it follows

$$
\begin{equation*}
\Phi_{1}(u) \leq 0 \quad \text { for every } u \in W_{-} \text {with }\|u\| \leq \rho \tag{3.9}
\end{equation*}
$$

for any $\rho>0$. On the other hand, combining (3.5) and (3.8), we get

$$
\begin{equation*}
\Phi_{1}(u) \geq 0 \quad \text { for every } u \in W_{+} \text {with }\|u\| \leq \rho \tag{3.10}
\end{equation*}
$$

provided that ρ is sufficiently small. Therefore also (2.2) is satisfied and the assertion follows from Proposition 2.3 and (3.6).

In case (b), we have $G_{1}(x, s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$. If the set $\{x \in \Omega: V(x)>0\}$ has positive measure and $\lambda>\lambda_{1}$, take now
$k \geq 1$ such that $\lambda_{k}<\lambda \leq \lambda_{k+1}$ and define W_{-}, W_{+}as in Proposition 2.5. Otherwise, let $W_{-}=\{0\}$ and $W_{+}=W_{0}^{1, p}(\Omega)$. In any case, W_{-}, W_{+}are two symmetric cones in $W_{0}^{1, p}(\Omega)$ satisfying (2.1) and

$$
\begin{align*}
& i\left(W_{0}^{1, p}(\Omega) \backslash W_{+}\right) \\
& \quad=i\left(\left\{u \in W_{0}^{1, p}(\Omega): \int_{\Omega}|\nabla u|^{p} d x<\lambda \int_{\Omega} V|u|^{p} d x\right\}\right), \tag{3.11}\\
& \exists \sigma \in] 0,1\left[: \quad(1+\sigma) \int_{\Omega}|\nabla u|^{p} d x \leq \lambda \int_{\Omega} V|u|^{p} d x \quad \forall u \in W_{-},\right. \tag{3.12}\\
& \int_{\Omega}|\nabla u|^{p} d x \geq \lambda \int_{\Omega} V|u|^{p} d x \quad \forall u \in W_{+} . \tag{3.13}
\end{align*}
$$

Combining (3.5) with (3.12), we get again (3.9) if ρ is sufficiently small. On the other hand, from (3.13) and the sign information on G_{1} we deduce (3.10) for any $\rho>0$. Then (2.2) is satisfied and the assertion follows from Proposition 2.3 and (3.11).

Now we can prove the main result of the section.
Theorem 3.4. Let us suppose that assumptions $\left(g 1^{\prime}\right)-\left(g 3^{\prime}\right)$ hold and let $V \in \mathcal{V}(\Omega)$. Then, for every $\lambda \in \mathbb{R}$, problem (3.1) has a nontrivial solution $u \in W_{0}^{1, p}(\Omega)$ in each of the following cases:
(a) there exists $\delta>0$ such that $G(x, s) \geq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$,
(b) there exists $\delta>0$ such that $G(x, s) \leq 0$ for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$ with $|s| \leq \delta$.

Proof. A standard argument shows that Φ satisfies the Palais-Smale compactness condition (see, e.g., [9, Proposition 4.3]).

Suppose, for a contradiction, that the origin is the only critical point of Φ. By Lemma 3.2 there exists $a<0$ such that Φ^{a} is contractible in itself. On the other hand, by the second deformation lemma (see e.g. Chang [3] or Mawhin and Willem [17]), Φ^{0} is a deformation retract of W and Φ^{a} is a deformation retract of $\Phi^{0} \backslash\{0\}$, so

$$
C^{q}(\Phi, 0)=H^{q}\left(\Phi^{0}, \Phi^{0} \backslash\{0\}\right) \approx H^{q}\left(W, \Phi^{a}\right)=0 \quad \text { for every } q \geq 0
$$

By Lemma 3.3 a contradiction follows.

For the sake of completeness, let us state a simple extension of a result of Perera [19], which can be proved by the same argument.

Theorem 3.5. Let us suppose that assumptions $\left(g 1^{\prime}\right)-\left(g 3^{\prime}\right)$ hold, let $V \in$ $\mathcal{V}(\Omega)$ and let $\lambda \geq 0$. If the set $\{x \in \Omega: V(x)>0\}$ has positive measure, assume also that $\lambda \notin\left\{\lambda_{k}: k \geq 1\right\}$, where $\left(\lambda_{k}\right)$ is the sequence defined in (2.4).

Then problem (3.1) has a nontrivial solution $u \in W_{0}^{1, p}(\Omega)$.
Thus, the extra assumption on λ is compensated by the fact that there is no sign condition on G. Observe that the union of Theorems 3.4 and 3.5 provides a complete extension to the case $p \neq 2$ of S.J. Li and Willem [15, Theorem 4].

4 Proof of Theorem 1.1

Since $V \in L^{\infty}(\Omega)$, we have $V \in \mathcal{V}(\Omega)$. It is also standard that assumptions $(g 1)-(g 3)$ imply $\left(g 1^{\prime}\right)-\left(g 3^{\prime}\right)$ (see e.g. Degiovanni and Lancelotti [9]). Then the assertion follows from Theorem 3.4.

References

[1] Antonio Ambrosetti and Paul H. Rabinowitz. Dual variational methods in critical point theory and applications. J. Functional Analysis, 14:349381, 1973.
[2] Vieri Benci. A new approach to the Morse-Conley theory and some applications. Ann. Mat. Pura Appl. (4), 158:231-305, 1991.
[3] Kung-ching Chang. Infinite-dimensional Morse theory and multiple solution problems, volume 6 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1993.
[4] Silvia Cingolani and Marco Degiovanni. Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity. Comm. Partial Differential Equations, 30(7-9):1191-1203, 2005.
[5] Jean-Noël Corvellec. Morse theory for continuous functionals. J. Math. Anal. Appl., 196(3):1050-1072, 1995.
[6] Jean-Noël Corvellec. On the second deformation lemma. Topol. Methods Nonlinear Anal., 17(1):55-66, 2001.
[7] Jean-Noël Corvellec and Abderrahim Hantoute. Homotopical stability of isolated critical points of continuous functionals. in Calculus of variations, nonsmooth analysis and related topics, Set-Valued Anal., 10(2-3):143-164, 2002.
[8] Mabel Cuesta. Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Differential Equations, pages No. 33, 9 pp. (electronic), 2001.
[9] Marco Degiovanni and Sergio Lancelotti. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):907-919, 2007.
[10] George Dinca, Petru Jebelean, and Jean Mawhin. Variational and topological methods for Dirichlet problems with p-Laplacian. Port. Math. (N.S.), 58(3):339-378, 2001.
[11] Edward R. Fadell and Paul H. Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 45(2):139-174, 1978.
[12] Xianling Fan and Zhancun Li. Linking and existence results for perturbations of the p-Laplacian. Nonlinear Anal., 42(8):1413-1420, 2000.
[13] Mohammed Guedda and Laurent Véron. Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., 13(8):879-902, 1989.
[14] Jia Quan Liu and Shu Jie Li. An existence theorem for multiple critical points and its application Kexue Tongbao (Chinese), 29(17):1025-1027, 1984.
[15] Shu Jie Li and Michel Willem. Applications of local linking to critical point theory. J. Math. Anal. Appl., 189(1):6-32, 1995.
[16] Shibo Liu. Existence of solutions to a superlinear p-Laplacian equation. Electron. J. Differential Equations, pages No. 66, 6 pp. (electronic), 2001.
[17] Jean Mawhin and Michel Willem. Critical point theory and Hamiltonian systems, volume 74 of Applied Mathematical Sciences, Springer-Verlag, New York, 1989.
[18] Kanishka Perera. Homological local linking. Abstr. Appl. Anal., 3(1-2):181-189, 1998.
[19] Kanishka Perera. Nontrivial solutions of p-superlinear p-Laplacian problems. Appl. Anal., 82(9):883-888, 2003.
[20] Kanishka Perera, Ravi P. Agarwal, and Donal O'Regan. Morse theory and p-laplacian type problems. preprint.
[21] Paul H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations, volume 65 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, R.I., 1986.
[22] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York, 1994. Corrected reprint of the 1966 original.
[23] Andrzej Szulkin and Michel Willem. Eigenvalue problems with indefinite weight. Studia Math., 135(2):191-201, 1999.

