Taking advantage of a closed-form generalized Maxwell distribution function [ P. Asinari and I. V. Karlin Phys. Rev. E 79 036703 (2009)] and splitting the relaxation to the equilibrium in two steps, an entropic quasiequilibrium (EQE) kinetic model is proposed for the simulation of low Mach number flows, which enjoys both the H theorem and a free-tunable parameter for controlling the bulk viscosity in such a way as to enhance numerical stability in the incompressible flow limit. Moreover, the proposed model admits a simplification based on a proper expansion in the low Mach number limit (LQE model). The lattice Boltzmann implementation of both the EQE and LQE is as simple as that of the standard lattice Bhatnagar-Gross-Krook (LBGK) method, and practical details are reported. Extensive numerical testing with the lid driven cavity flow in two dimensions is presented in order to verify the enhancement of the stability region. The proposed models achieve the same accuracy as the LBGK method with much rougher meshes, leading to an effective computational speed-up of almost three times for EQE and of more than four times for the LQE. Three-dimensional extension of EQE and LQE is also discussed.
Quasiequilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability / Asinari, Pietro; I. V., Karlin. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 81:(016702)(2010). [10.1103/PhysRevE.81.016702]
Quasiequilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability
ASINARI, PIETRO;
2010
Abstract
Taking advantage of a closed-form generalized Maxwell distribution function [ P. Asinari and I. V. Karlin Phys. Rev. E 79 036703 (2009)] and splitting the relaxation to the equilibrium in two steps, an entropic quasiequilibrium (EQE) kinetic model is proposed for the simulation of low Mach number flows, which enjoys both the H theorem and a free-tunable parameter for controlling the bulk viscosity in such a way as to enhance numerical stability in the incompressible flow limit. Moreover, the proposed model admits a simplification based on a proper expansion in the low Mach number limit (LQE model). The lattice Boltzmann implementation of both the EQE and LQE is as simple as that of the standard lattice Bhatnagar-Gross-Krook (LBGK) method, and practical details are reported. Extensive numerical testing with the lid driven cavity flow in two dimensions is presented in order to verify the enhancement of the stability region. The proposed models achieve the same accuracy as the LBGK method with much rougher meshes, leading to an effective computational speed-up of almost three times for EQE and of more than four times for the LQE. Three-dimensional extension of EQE and LQE is also discussed.File | Dimensione | Formato | |
---|---|---|---|
2294914.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2294914
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo