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Taking advantage of a closed-form generalized Maxwell distribution function �P. Asinari and I. V. Karlin,
Phys. Rev. E 79, 036703 �2009�� and splitting the relaxation to the equilibrium in two steps, an entropic
quasiequilibrium �EQE� kinetic model is proposed for the simulation of low Mach number flows, which enjoys
both the H theorem and a free-tunable parameter for controlling the bulk viscosity in such a way as to enhance
numerical stability in the incompressible flow limit. Moreover, the proposed model admits a simplification
based on a proper expansion in the low Mach number limit �LQE model�. The lattice Boltzmann implemen-
tation of both the EQE and LQE is as simple as that of the standard lattice Bhatnagar-Gross-Krook �LBGK�
method, and practical details are reported. Extensive numerical testing with the lid driven cavity flow in two
dimensions is presented in order to verify the enhancement of the stability region. The proposed models
achieve the same accuracy as the LBGK method with much rougher meshes, leading to an effective compu-
tational speed-up of almost three times for EQE and of more than four times for the LQE. Three-dimensional
extension of EQE and LQE is also discussed.

DOI: 10.1103/PhysRevE.81.016702 PACS number�s�: 47.11.�j, 05.20.Dd

I. INTRODUCTION

The lattice Boltzmann �LB� method has recently met with
a remarkable success as a powerful alternative for solving
the hydrodynamic Navier-Stokes equations, with applica-
tions ranging from large Reynolds number flows to flows at a
micron scale, porous media, and multiphase flows �1�. The
LB method solves a fully discrete kinetic equation for popu-
lations f i�x , t�, designed in a way that it reproduces the
Navier-Stokes equations in the hydrodynamic limit in D di-
mensions. Populations correspond to discrete velocities vi
for i=0,1 , . . . ,Q−1, which fit into a regular spatial lattice
with the nodes x. This enables a simple and highly efficient
algorithm based on �a� nodal relaxation and �b� streaming
along the links of the regular spatial lattice �2,3�.

On the other hand, numerical stability of the LB method
remains a critical issue �4�. Recalling the role played by the
Boltzmann’s H theorem in enforcing macroscopic evolution-
ary constraints �the second law of thermodynamics�, and
crediting the latter as an essential condition for enhancing the
stability of the method, pertinent entropy functions have
been proposed, whose local equilibrium is suitable to recover
the Navier-Stokes equations �5–9�.

Other heuristic methods were proposed recently in order
to enhance stability of LB. The rationale behind one of them,
the matrix model �10� or, equivalently, the multiple-
relaxation time �MRT� �11�, is to execute a collision in the
moment representation �different from the propagation in the
populations representation� by relaxing different moments at
a different rate. Optimal relaxation can be guided by linear
stability analysis �12� �even though the actual performances
may be effected by the nonlinearity�. Even though it was not

explicitly stated in the original papers �10–12�, at least a part
of the enhanced stability is due to increasing the bulk viscos-
ity of the quasicompressible LB scheme, which can be
viewed as a free parameter if the incompressible flow is the
only concern. Moreover, the standard lattice Bhatnagar-
Gross-Krook �LBGK� method can be written as a MRT, by
performing the collisions in the moment representation and,
conversely, MRT can be written as a LBGK by introducing a
generalized equilibrium �13�. These observations suggest
that increasing the numerical bulk viscosity by itself can be
considered as a leading idea and it should not be concealed
by a specific way in which collisions are performed.

In this paper, we take advantage of the recent crucial re-
sult concerning the closed-form generalized equilibrium �see
Eq. �3� below and Ref. �14��, in order to derive a simple
entropy-based quasiequilibrium model �see �8,15,16� for a
general LB setting� with tunable bulk viscosity for enhancing
stability. This approach differs from the MRT, and is in fact
simpler, because no collision is actually performed in any
moment space, even though it is based on recognizing the
role of bulk viscosity for stability enhancement. The gener-
alized equilibrium is the analog of the anisotropic Gaussian,
and is a long-needed relevant distribution in the LB method
�14�. This finding allows one to derive simple LB models
with an additional free-tunable parameter for controlling the
bulk viscosity, where the actual range is dictated by the en-
tropy production inequality. In addition to the preliminary
results reported in Ref. �14�, this paper presents details of the
basic steps of construction of these models and their numeri-
cal implementation, and provides numerical examples for
measuring the stability improvement.

Before going any further, let us clarify the difference be-
tween the previous approach based on the discrete-time H
theorem �DTH� �6,17� and the present one based on the fa-
miliar continuous-time H theorem �CTH�. In this paper, only
the latter will be used, but it is important to summarize the
main analogies and differences.

*pietro.asinari@polito.it
†karlin@lav.mavt.ethz.ch

PHYSICAL REVIEW E 81, 016702 �2010�

1539-3755/2010/81�1�/016702�15� ©2010 The American Physical Society016702-1

http://dx.doi.org/10.1103/PhysRevE.81.016702


The key advantage of the DTH is the notion of uncondi-
tional stability of the corresponding entropic LB scheme �the
entropy function becomes a global convex Lyapunov func-
tion of the entropic LB dynamics�. Moreover the positivity is
automatically enforced by the condition that the H function
in a postcollision state is not greater than in the precollision
state. However enforcing the discrete-time H theorem comes
with the need of solving a nonlinear entropy estimate at each
lattice cite. The effect of the unconditional stability is the
locally adaptive viscosity when the simulation is under-
resolved �similar to the eddy viscosity concept in large eddy
simulation�.

On the other hand, in the approach based on CTH theo-
rem in the present paper, the unconditional stability is thus
lost by the corresponding lattice Boltzmann time discretiza-
tion. Stabilization mechanism here is not based on the DHT
entropy estimate but is rather of the same nature as in the
MRT models �although it is not identical to MRT as it is
known in the cited literature�, since the mechanism for en-
hancing stability is sought as increasing the bulk viscosity
over the LBGK value. The CTH theorem in the present deri-
vation is the standard one in kinetic theory �which is essen-
tially the statement about the instantaneous entropy produc-
tion inequality due to collisions�, which gives a relation
between the bulk and shear viscosities in this model. This is
the only pertinent implication of the entropy production in-
equality here, it states that the bulk viscosity must be not
smaller than the shear viscosity in order that the entropy
production inequality remains negative, and which is consis-
tent with the desired increase of the bulk viscosity above the
shear viscosity �in LBGK they are equal�. This is a simple
yet useful implication of the CTH theorem �entropy produc-
tion inequality�, because without it the shear and bulk vis-
cosity are only requested to be positive �but their relative
magnitude is not defined� as follows from the asymptotic
�Chapman-Enskog� analysis alone. The key idea is to in-
crease the dissipation of the model for dumping the com-
pressibility waves, which are irrelevant to the incompressible
dynamics.

Summarizing, the H-function and their minimisers �equi-
librium or quasiequilibria� are the same in both approaches.
However these are static objects, defined irrespectively of the
relaxation toward them. On the other hand, the H-theorem is
always a statement about the relaxation toward these minima
points, which can be differently implemented in the ap-
proaches respectively based on the DTH theorem and the
CTH theorem, as shown here. The first approach ensures the
unconditional stability by solving a nonlinear entropy esti-
mate, while the second approach is much simpler but it is
restricted by some stability thresholds. The interesting point
is that the second approach allows one to explain clearly the
link between the MRT models and the entropic models.
Moreover, the CTH theorem can be used as a tool for deriv-
ing more general models on generic lattices �18�.

The outline of the paper is as follows. First, for the sake
of completeness, we remind the construction of continuous-
time-space quasiequilibrium models, as briefly reported in
Ref. �14�. In Sec. II the closed-form equilibria are discussed:
in particular, in Sec. II A the generalized Maxwellian and in
Sec. II B the constrained equilibrium. By means of the pre-

vious analytical results, in Sec. III the two proposed models
are discussed: in Sec. III A the entropy-based model �EQE�
and in Sec. III B the expanded �with regards to the local
Mach number� model �LQE�. The time and space discretiza-
tion is done following the general procedure for quasiequi-
librium LB models �8� the implementation details are re-
ported in Sec. III C. Readers interested primarily in the
practical applications can move directly to Secs. III B and
III C. Numerical tests with the lid driven cavity flow are
reported in Sec IV. These numerical tests suggest that the
present approach is of the order of four times more efficient
than the standard LBGK method with comparable accuracy.
Finally, conclusions are drawn in Sec V. In the Appendix, the
three-dimensional �3D� generalization of the model is pre-
sented.

II. CLOSED-FORM EQUILIBRIA

A. Generalized Maxwellian

For the sake of presentation and without any loss of gen-
erality, we consider the popular nine-velocity model, the so-
called D2Q9 lattice, of which the discrete velocities are: v0
= �0,0�, vi= ��c ,0� and �0, �c� for i=1–4, and vi
= ��c , �c�, for i=5–8 �3� where c is the lattice spacing.
Recall that the D2Q9 lattice derives from the three-point
Gauss-Hermite formula �19�, with the following weights of
the quadrature w�−1�=1 /6, w�0�=2 /3 and w�+1�=1 /6. Let
us arrange in the list vx all the components of the lattice
velocities along the x axis and similarly in the list vy. Analo-
gously let us arrange in the list f all the populations f i. Al-
gebraic operations for the lists are always assumed compo-
nentwise. The sum of all the elements of the list p is denoted
by �p�=�i=0

Q−1pi. The dimensionless density �, the flow veloc-
ity u and the second-order moment �pressure tensor� P are
defined by �= �f�, �u�= �v�f�, and �P��= �v�v�f�, respec-
tively.

On the lattice under consideration, the convex entropy
function �H function� is defined as �6�

H�f� = �f ln�f/W�� , �1�

where W=w�vx /c�w�vy /c�. The H-function minimization
problem is considered in the sequel. It is well known �6� that
the equilibrium population list fM is defined as the solution
of the minimization problem fM =minf�SM

H�f�, where SM is
the set of functions such that SM = �f �0: �f�=� , �vf�=�u	.
In other words, minimization of the H function �1� under the
constraints of mass and momentum conservation yields �7�

fM = � 

�=x,y

w�v�/c��2 − ��u�/c���2�u�/c� + ��u�/c�
1 − �u�/c� �v�/c

,

�2�

where ��z�=1+3z2. A remarkable feature of equilibrium
�2� which it shares with the ordinary Maxwellian is that it is
a product of one-dimensional equilibria. In order to ensure
the positivity of fM, the low Mach number limit must be
considered, i.e., �u���c.

It is possible to derive a novel constrained equilibrium, or
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quasiequilibrium �20�, by requiring, in addition, that the di-
agonal components of the pressure tensor P have some pre-
scribed values �14�. Hence let us introduce a different mini-
mization problem. The quasiequilibrium population list fG is
defined as the solution of the minimization problem fG

=minf�SG
H�f�, where SG�SM is the set of functions such

that SG= �f �0: �f�=� , �vf�=�u , �v�
2 f�=�P��	. In other

words, minimization of H function �1� under the constraints
of mass and momentum conservation and prescribed diago-
nal components of the pressure tensor yields

fG = � 

�=x,y

w�v�/c�
3�c2 − P���

2c2 �P�� + cu�

P�� − cu�

�v�/c�2P��
2 − c2u�

2

c2 − P��

�v�
2 /c2

. �3�

To ease notation, we use P= �Pxx , Pyy� for a generic point on
the two-dimensional plane of parameters. In order to ensure
the positivity of fG, it is required that P�	 where 	
= �P :c�ux�� Pxx�c2 ,c�uy�� Pyy �c2	 is a convex rectangular
in the plane of parameters for each velocity u �see Fig. 1�.

Generalized Maxwellian �3� is the central result for the
following derivations. It is interesting to note that, while
equilibrium �2� is analogous to the ordinary Maxwellian
�spherically symmetric Gaussian fM �exp�−m�v
−u�2 /2kB
0	, shifted from the origin by the amount of mean
flow velocity u, and with the width proportional to the fixed
temperature 
0=c2 /3�, quasiequilibrium �3� resembles the
anisotropic Gaussian, fG�exp�−�1 /2��v−u� ·P−1 · �v−u�	.
The latter generalized Maxwellian corresponds to the ellip-
soidal symmetry, and is among the only few analytic results
on the relevant distribution functions in the classical kinetic
theory. It is revealing that also in the LB realm the analog of
the generalized Maxwellian has a nice closed form �Eq. �3��.
We note that explicit form of the quasiequilibrium is possible
due to a general result about a factorization symmetry of a
certain class of quasiequilibria for discrete velocity sets es-

tablished as tensor products of one-dimensional velocities
�we remind that the D2Q9 velocity set is a tensor product of
two copies of one-dimensional sets �−c ,0 ,c	; details for a
general case are given in �18��.

Moreover, it is possible to evaluate explicitly the H func-
tion in the generalized Maxwell states �Eq. �3��, HG=H�fG�,
the result is elegantly written

HG = � ln � + � �
�=x,y

�
k=−,0,+

wkak�P���ln�ak�P���� , �4�

where w�=w��1�, w0=w�0�, a��P���=3�P���cu�� /c2,
and a0�P���=3�c2− P��� / �2c2� �see Fig. 1�.

It is worth to analyze the moments of fG. Clearly in a
discrete velocity model, the number of linearly independent
moments is equal to the number of discrete velocities Q.
Hence the calculation of the moments can be performed by
means of a linear mapping, namely m=Mf , where M is the
nonorthogonal transformation matrix, namely,

M = �1,vx,vy,vx
2,vy

2,vxvy,�vx�2vy,vx�vy�2,�vx�2�vy�2�T,

�5�

which involves proper combinations of the lattice velocity
components. Applying this linear mapping yields

mG = M · fG = ��1,ux,uy,Pxx,Pyy,uxuy,uyPxx,uxPyy,PxxPyy�T.

�6�

This clearly shows that the quasiequilibrium moments de-
pend only on the constrained quantities, i.e., the conserved
moments �mass and momentum� and the prescribed diagonal
components of the second-order moment tensor �Pxx and
Pyy�. As we see, for the whole five-parametric family of
functions fG�� ,u , Pxx , Pyy� it holds that the off-diagonal
component of the pressure tensor does not depend on P��,
and is in the form required by the Maxwell-Boltzmann rela-
tion,

�fGcxcy� = �uxuy for any P . �7�

The previous linear mapping M was introduced with the
intent to clarify the structure of the generalized Maxwellian
with regards to some meaningful moments, but this does not
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FIG. 1. �Color online� Contour plot of the entropy HG �Eq. �4��
at �=1, ux=−0.2 and uy =0.1 �c=1�. Rectangular domain is the
positivity domain 	. M is the image of the Maxwellian �Eq. �2��. O
is the image of a generic nonequilibrium state while C is the image
of the constrained equilibrium �Eq. �10�� �minimum of HG on the
line LT�. C� is the low Mach number approximation of C, according
to approximation �Eq. �21��.
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effect the derivation of fG �Eq. �3��, which is done by means
of entropic concepts only. In the next section, this result is
used to derive the constrained equilibrium.

B. Constrained equilibrium

With the help of fG �Eq. �3��, let us derive a constrained
equilibrium fC which brings the H-function to a minimum
among all the population lists with a fixed trace of the pres-
sure tensor T�P�= Pxx+ Pyy. In terms of the parameter set 	,
this is equivalent to require that the point C= �Pxx

C , Pyy
C � be-

longs to a line segment LT= �P�	 : Pxx+ Pyy =T	, and the
constrained equilibrium C is that minimizing the function HG
�Eq. �4�� on LT �see Fig. 1�. Since the restriction of a convex
function to a line is also convex, the solution to the latter
problem exists and is found by ���HG /�Pxx�
− ��HG /�Pyy���Pxx,Pyy��LT

=0, which yields a cubic equation in
terms of the normal stress difference N= Pxx

C − Pyy
C ,

N3 + aN2 + bN + d = 0,

a = −
1

2
�ux

2 − uy
2�, b = �2c2 − T��T − u2� ,

d = −
1

2
�ux

2 − uy
2��2c2 − T�2. �8�

Let us define p=−a2 /3+b, q=2a3 /27−ab /3+d, and �
= �q /2�2+ �p /3�3. As long as ��0, which is well satisfied in
the low Mach number limit, the Cardano formula implies

Pxx
C =

T

2
+

1

2
�r −

p

3r
−

a

3
�, r =3 −

q

2
+ � , �9�

while Pyy
C =T− Pxx

C �note that a spurious root corresponding to
−� was neglected in Eq. �9� as it does not satisfy the as-
ymptotics at ux=uy =0�. Thus, substituting Eq. �9� into Eq.
�3�, we find the constrained equilibrium

fC = fG��,u,Pxx
C �u,T�,Pyy

C �u,T�� . �10�

Before proceeding any further, we mention that generalized
Maxwellian �3� is consistent with and extends the previously
known results:

�i� the point of global minimum of the function HG
�Eq. �4�� on 	 is found from ��HG /�P���=0. The cor-
responding solution M = �Pxx

M , Pxx
M�, where P��

M =−c2 /3
+ �2c2 /3�1+3�u� /c�2, recovers the equilibrium fM �Eq. �2��
upon substitution into Eq. �3�: fM = fG�� ,u , Pxx

M�u� , Pyy
M�u��.

ii� In Ref. �8�, a different LB equilibrium f
 was intro-
duced as the entropy minimization problem under fixed den-
sity, momentum and energy. That equilibrium was evaluated
exactly only for vanishing velocity in �8� while a series ex-
pansion was used for u�0. The previous result reported
above solves the problem of Ref. �8� exactly for any velocity:
Substituting T=2
+u2 �two-dimensional ideal-gas equation
of state, with 
 the temperature� into Eq. �10�, it is simply
f
�� ,u ,
�= fG�� ,u , Pxx

C �u ,2
+u2� , Pyy
C �u ,2
+u2��. Ex-

panding the exact solution Pxx
C �Eq. �9�� in terms of the ve-

locity u yields the approximate solution consistent with Ref.
�8�, namely,

Pxx
C = 
 + �
 + 1

4

�ux

2 + �3
 − 1

4

�uy

2 + O�Ma4� . �11�

We note that the present derivation of the exact solution at
arbitrary values of u �in the definition domain� was possible
due to two separate steps: First, establishing the quasiequi-
librium with a factorization property, and second, by noticing
that the further minimization step amounts to a simple-cubic
equation. The direct minimization attempt of Ref. �8�, though
fully equivalent, has led to a more involved algebra which
was probably the reason of overlooking the simple structure
of the exact solution in that paper.

�iii� In Ref. �21�, a so-called guided equilibrium f̃
 was
introduced in order to derive LB method for compressible
flows. That equilibrium is recovered by simply assuming the
Maxwell-Boltzmann form of the diagonal components, Pxx

=
+ux
2 and Pyy =
+uy

2, in Eq. �3�: f̃
�� ,u ,
�= fG�� ,u ,

+ux

2 ,
+uy
2�.

Thus, generalized Maxwellian �3� and its implication,
constrained equilibrium �10�, unifies all the equilibria intro-
duced previously on the D2Q9 lattice. The extension to the
three dimensional case is really straightforward and the de-
tails are reported in the Appendix. Moreover, in the next
section, this result is used to introduce the proposed model
with tunable bulk viscosity.

III. QUASIEQUILIBRIUM KINETIC MODELS

A. Entropy-based kinetic model (EQE)

Let us introduce the entropy-based quasiequilibrium
model �EQE model in the following� �see �8,15,16� for gen-
eral LB setting� for the kinetic equation �time and space are
both continuous�

�t f + c · �f = J�f� �12�

where

J = −
1

 f
�f − fC� −

1

s
�fC − fM� . �13�

It is straightforward to prove the H theorem for the previous
model. For that, it suffices to rewrite

J�f� = −
1

s
�f − fM� −

�s −  f�
 fs

�f − fC� . �14�

The entropy production �= �ln�f /W�J�f�� becomes

� = −
1

s
�ln�f/fM��f − fM�� −

�s −  f�
 fs

�ln�f/fC��f − fC�� ,

�15�

which is nonpositive ��0 and it annihilates at the equilib-
rium, i.e., ��fM�=0, provided that relaxation times satisfy the
time hierarchical condition,

 f � s. �16�

Moreover, it is possible to introduce a compact form for
the proposed kinetic model, namely,
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Dtf = �t f + c · �f = J�f� = −
1

 f
�f − fQE� , �17�

where the quasiequilibrium fQE is defined as

fQE��,u,T� =
 f

s
fM��,u� + �1 −

 f

s
� fC��,u,T� , �18�

and it is essentially a linear interpolation between the local
Maxwellian fM and the constrained equilibrium fC by means
of the blending parameter  f /s�1. Hence the proposed
model involves a quasiequilibrium with a tunable parameter
�the ratio  f /s� and it admits a H theorem as far as the free
parameter is tuned such that  f /s�1. In the following, let us
discuss how this parameter is related to the bulk viscosity,
which is the main target of the present paper.

Recalling Eq. �14�, the �truncated� moment system of
equations is

�t� + �x��ux� + �y��uy� = 0,

�t��ux� +
1

2
�x��T� +

1

2
�x��N� + �y��Pxy� = 0,

�t��uy� +
1

2
�y��T� −

1

2
�y��N� + �x��Pxy� = 0,

�t��Pxy� + �x��Qyxx� + �y��Qxyy� = −
�

 f
�Pxy − uxuy� ,

�t��T� + �x��ux� + �y��uy� + �x��Qxyy� + �y��Qyxx�

= −
�

s
�T − TM� ,

�t��N� + �x��ux� − �y��uy� − �x��Qxyy� + �y��Qyxx�

= −
�

s
�N − NM� − � 1

 f
−

1

s
���N − NC� ,

�t��Qyxx� + �x��Pxy� + �y��Rxxyy�

= −
�

s
�Qyxx − uy

TM + NM

2
�

− � 1

 f
−

1

s
���Qyxx − uy

T + NC

2
� ,

�t��Qxyy� + �x��Rxxyy� + �y��Pxy�

= −
�

s
�Qxyy − ux

TM − NM

2
�

− � 1

 f
−

1

s
���Qxyy − ux

T − NC

2
� ,

�t��Rxxyy� + �x��Qxyy� + �y��Qyxx�

= −
�

s
�Rxxyy −

TM
2 − NM

2

4
�

− � 1

 f
−

1

s
���Rxxyy −

T2 − NC
2

4
� . �19�

In the low Mach number limit, we have

NC = ux
2 − uy

2 + O�Ma4� , �20�

and thus

NC = NM + O�Ma4� , �21�

where

NM =
2c2

3
�1 + 3

ux
2

c2 −1 + 3
uy

2

c2� = ux
2 − uy

2 + O�Ma4� .

�22�

Assuming the low Mach number limit and introducing the
previous expression in Eq. �19�, it is possible to recover ap-
proximated expressions for the nonconserved moments. In
particular, the Chapman-Enskog asymptotic procedure yields
the following approximations of the pressure tensor compo-
nents at the leading order, indicated by the superscript �0�,

Pxy
�0� = uxuy ,

T�0� = Dcs
2 + u2,

N�0� = ux
2 − uy

2, �23�

where D=2 and cs
2=c2 /3, and

Qxyy
�0� = cs

2ux, Qyxx
�0� = cs

2uy , �24�

for the approximations of third-order energy flux. Similarly,
small deviations of the nonconserved moments from the pre-
vious approximations, indicated by the superscript �Eq. �1��,
immediately follow

Pxy
�1� = −  fcs

2��yux + �xuy� ,

T�1� = − sDcs
2��xux + �yuy� ,

N�1� = −  fDcs
2��xux − �yuy� . �25�

Grouping together leading-order approximations, i.e., Pxy
�0�,

T�0�, and N�0� given by Eq. �23�, and small deviations of the
nonconserved moments, i.e., Pxy

�1�, T�1�, and N�1� given by Eq.
�25�, allows one to recover the hydrodynamic equations

�t� + ����u�� = 0,

�tu� + u���u� +
1

�
���cs

2�� −
1

�
��������u� + ��u�

−
2

D
�����u��� −

1

�
�������u�� = 0, �26�

where the transport coefficients are
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� =  fcs
2, � = scs

2, �27�

for the kinematic viscosity and the bulk viscosity, respec-
tively. Thus, from �Eq. �16��, the bulk viscosity is larger than
the kinematic viscosity in this model,

� � � . �28�

In particular, the parameter for enhancing stability is the ratio
� /��1, as pointed out by the following numerical tests. Be-
fore proceeding with the numerical implementation, the next
section reports a simplified version of the model, based on
expansion with regards to the low Mach number limit.

B. Expanded model (LQE)

The goal of this section is to provide the basic details of a
simplified version of the kinetic model, based on the expan-
sion with regards to the Mach number �LQE model in the
following�. The simplification concerns the following three
issues:

�i� first of all, recalling the compact form given by Eq.
�18�, it is possible to realize that the proposed quasiequilib-
rium fQE requires to compute twice the same generalized
Maxwellian fG with different arguments, namely,

fQE��,u,T� =
 f

s
fG��,u,Pxx

M�u�,Pyy
M�u��

+ �1 −
 f

s
� fG��,u,Pxx

C �u,T�,Pyy
C �u,T�� .

�29�

�ii� Second, the generalized Maxwellian fG given by Eq. �3�
with generic arguments �Pxx , Pyy� can be expressed in a sim-
pler equivalent way in terms of components, namely,

fG�0,0� =
�

c4 �c2 − Pxx��c2 − Pyy� ,

fG��1,0� =
�

2c4 �Pxx � cux��c2 − Pyy� ,

fG�0,�1� =
�

2c4 �c2 − Pxx��Pyy � cuy� ,

fG��1,�1� =
�

4c4 �Pxx � cux��Pyy � cuy� . �30�

�iii� Finally, in the low Mach number limit, recalling that
P��

M =−cs
2+2cs

21+u�
2 /cs

2 and recalling Eq. �20�, the follow-
ing expressions:

Pxx
M�u� = cs

2 + ux
2 + O�Ma4� ,

Pyy
M�u� = cs

2 + uy
2 + O�Ma4� , �31�

hold for the equilibrium moments, while the expressions

Pxx
C �u,T� =

T

2
+ ux

2 −
ux

2 + uy
2

2
+ O�Ma4� ,

Pyy
C �u,T� =

T

2
+ uy

2 −
ux

2 + uy
2

2
+ O�Ma4� , �32�

hold for the constrained moments, where the residuals
O�Ma4� can be neglected in both cases. Equations �30� and
�32� are generalized for the three-dimensional case in the
Appendix.

It should be stressed that, while the results for the EQE
model are exact for any u �subject to the positivity con-
straint�, the later restriction to the low Mach number expan-
sion is a matter of convenience, and it leaves intact the over-
all accuracy �with respect to recovering hydrodynamic
equations� of the proposed model. We concluded this section
by pointing out the connection between the expanded model
and the multiple-relaxation-time �MRT� collision operator
�14�. First of all, as far as the hydrodynamic limit is con-
cerned, the deviations of quasiequilibrium moments from
equilibrium values can be neglected for all orders strictly
higher than the second. In other words, for third and fourth
order moments, the equilibrium values can be substituted
instead of the quasiequilibrium values, without effecting the
leading hydrodynamics. Hence it remains to discuss the
second-order deviations. Combining the expressions given
by Eqs. �32� yields

Pxx
C �u,T� =

Pxx + Pyy + Pxx
M − Pyy

M

2
,

Pyy
C �u,T� =

Pxx + Pxx − Pxx
M + Pyy

M

2
. �33�

Recalling Eqs. �17� and �29�, the second-order deviations
become

Pxx
QE − Pxx =

� + 1

2
�Pxx

M − Pxx� +
� − 1

2
�Pyy

M − Pyy� ,

Pyy
QE − Pyy =

� − 1

2
�Pxx

M − Pxx� +
� + 1

2
�Pyy

M − Pyy� , �34�

where �= f /s�1. Taking into account the previous expres-
sions, the collision operator can be approximated by

J��f� = − A�f − fM� , �35�

where A=1 / fM
−1�M, M is the linear mapping defined by

Eq. �5� and the 9�9 matrice � is

� = diag��1,1,1�,��+ �−

�− �+
�,�1,1,1,1�� , �36�

with ��= ���1� /2. Operator J� is a collision operator in a
matrix form �4� with collision matrix A �characterized by two
relaxation times  f and  f /�=s�, but it can be easily ex-
pressed as a MRT collision integral �22�, by using the map-
ping M for defining a moment representation.

In the next section, some details are reported concerning
the numerical implementation in order to avoid the discrete
lattice effects, i.e., numerical errors due to the spatial dis-
cretization �lattice Knudsen number�, which may effect the
expressions of the effective transport coefficients.
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C. Lattice Boltzmann realization

Let us derive a lattice Boltzmann scheme from the kinetic
model, Eqs. �17� and �18�, following the general procedure
of Ref. �8�. Kinetic Eq. �17� is integrated in time from t to
t+�t along characteristics, and the time integral of the right-
hand side is evaluated by trapezoidal rule to get

f�x + v�t,t + �t� − f�x,t� =
�t

2
J�f�x + v�t,t + �t��

+
�t

2
J�f�x,t�� . �37�

The latter expression involves implicit computations, which
may be cumbersome to code. In order to avoid them, let us
apply the following variable transform �8,23�:

f → g = f −
�t

2
J�f� , �38�

to Eq. �37�, which yields

g�x + v�t,t + �t� = �1 − � f�g�x,t� + � f fQE��,u,TCN� ,

�39�

where �= �g� and u= �vg� / �g�, because mass and momentum
are conserved, while

TCN�g� = �1 −
�s

2
�T�g� +

�s

2
TM�g� , �40�

T�g� = ��vx
2 + vy

2�g� , �41�

TM�g� =
2c2

3
�1 + 3

ux
2

c2 +1 + 3
uy

2

c2 − 1�
=

2c2

3
+ ux

2 + uy
2 + O�Ma4� , �42�

and

� f =
2�t

2 f + �t
, �s =

2�t

2s + �t
. �43�

In particular, using the first or the second expression reported
in Eq. �42� depends on the considered model, i.e., if the
entropy-based model or the expanded model is implemented
respectively. By means of Chapman-Enskog asymptotic pro-
cedure, it is possible to prove that the previous lattice Bolt-
zmann scheme recovers the Navier-Stokes equations up to
the second order with regards to �x=c�t, with the kinematic
viscosity �= fcs

2 and the bulk viscosity �=scs
2, as it happens

for the continuous �in space and time� kinetic model.
A few comments on the above discretization scheme are

in order. First, we remark that a simpler discretization of
kinetic equation using a forward Euler scheme, f�x+v�t , t
+�t�− f�x , t�=�tJ�f�x , t�� is only first-order accurate in the
above sense. For s= f �that is, for the BGK case�, the latter
scheme can be reinterpreted as a second-order accurate with
rescaled viscosity coefficients, as is well known. However, in
general, such a reinterpretation is not straightforward if col-
lision integral depends explicitly on the nonconserved mo-

ments �or, in other words, it depends explicitly on a quasi-
equilibrium distribution rather than solely on the local
equilibrium�. This is the situation at hand when  f �s.
Therefore, in order to avoid the reinterpretation step �which
is somewhat arbitrary�, we used a general method for quasi-
equilibrium models available in the literature �8�. Second,
the above scheme should not be confused with the entropic
time stepping scheme �or the discrete-time H theorem� �5–9�.
In the latter case, the entropy estimate of the collision step is
applied after every advection step which guarantees the non-
increase of the H function. In the present case, the
continuous-time H theorem established above delivers the
estimate for the parameters of the model �the relaxation
times  f and s�, while the discrete-time H theorem is not
implemented by scheme �39�. Finally, both the methods
�5–9� and the present one define equilibria and quasiequilib-
ria as a minimum of the pertinent entropy function under
corresponding constraints, with a further optional simplifica-
tion at low Mach numbers.

In the next section, some numerical tests are reported in
order to prove the effectiveness of the proposed scheme with
enhanced stability.

IV. NUMERICAL VALIDATION BY LID DRIVEN CAVITY

The proposed scheme with enhanced stability has been
already preliminary tested in Ref. �14� by means of the
Taylor-Green vortex flow, in order to prove that even large
bulk viscosities may be adopted without affecting signifi-
cantly the numerical results at low Mach numbers. In this
section, the effective enhanced stability is measured for the
two-dimensional lid driven cavity test, and a relation be-
tween stability and accuracy is established. This test has been
chosen because it is characterized by singularity of the pres-
sure in the lid corners and hence it is suitable for testing the
robustness of the scheme. In the following sections, the en-
hanced stability is investigated first and then the relation with
the accuracy in terms of both vortex locations and global
solution is studied.

A. Stability test

Let us solve the standard lid driven cavity flow by using
the proposed entropic quasiequilibrium model. Let us con-
sider a square domain �x ,y�� �0,L�� �0,L� and let us as-
sume L=1. Moreover the simulation time is t� �0, t0�, where
t0=100, which is considered enough to reach the steady-state
conditions for the considered Reynolds numbers �see next�.
The computational domain is discretized by a uniform collo-
cated grid with N�N points. The boundaries are located half
cell away from the computational nodes. Let us denote xb the
generic boundary computational node. Clearly, in all inner
computational nodes �x�xb�, Eq. �39� holds for any lattice
velocity vi. In the generic boundary computational node xb,
Eq. �39� holds for any lattice velocity vi such that xb+vi�t is
still a computational node. In case xb+vi�t is out of the
computational grid, then the following boundary condition
holds
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gī�xb,t + �t� = gi
��xb,t� − 6fM��,0�vi · ub/c2, �44�

where vī=−vi is the bounce-back lattice velocity, g��x , t� is
the postcollision distribution function defined as

g��x,t� = �1 − � f�g�x,t� + � f fQE��,u,TCN� , �45�

and ub is the boundary velocity �imposed half cell away from
the boundary computational node xb�. In the following nu-
merical simulations, ub= �uL ,0�T at the lid wall, where uL is
the lid velocity, and ub=0 for all the other walls. At the lid
corners, the lid velocity is imposed, while for other corners
the boundary conditions given by Eq. �44� are composed.

Since we are interested in the incompressible limit, the
effect of the bulk viscosity �, considered as a free tunable
parameter, is analyzed. In Figs. 2 and 3, the numerical results
are reported for the case of Reynolds number Re=uLL /�
=1000. Concerning the streamlines, it is confirmed that even
large ratios of � /� does not practically effect the result. How-
ever the limit on the pressure field is more strict because

beyond � /�=10 some slight effects on the pressure contours
are found. Hence in the following, the bulk viscosity is fixed
to �=10�.

First of all, let us analyze the pure stability enhancement
of the proposed model. It is well known that, the lid driven
cavity involves a singular pressure field, in the top lid cor-
ners of Fig. 3. For this reason, this numerical test is well
suited for checking the actual stability of a numerical scheme
in dealing with nonlinear Navier-Stokes equations. In par-
ticular, the singular pressure corners excite and promote
compressible waves in the pressure field. The key of the
entropic quasiequilibrium is to use large bulk viscosity to
damp this pressure waves and attenuate them effectively. As
reported in Table I, this attenuation mechanism leads to a
consistent enhancement of the stability performance of the
scheme. Practically this means that the proposed scheme can
deal with much smaller meshes �essentially one fourth of the
minimum mesh required by the usual BGK scheme�.

Introducing the Mach number Ma=uL /c, where uL is the
lid velocity and c is the lattice speed, recalling that cs
=c /3 and �= fcs

2, and using the definition of the Reynolds

y
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EQE, ξ=0.010
EQE, ξ=0.100

FIG. 3. Pressure field contours for the lid driven cavity flow
with Re=1000, t0=100 and mesh 160�160. The kinematic viscos-
ity is fixed to �=0.001, while different values of the bulk viscosities
�� �0.001,0.1� are considered.
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FIG. 2. Streamlines for the lid driven cavity flow with Re
=1000, t0=100 and mesh 160�160. The kinematic viscosity is
fixed to �=0.001, while different values of the bulk viscosities �
� �0.001,0.1� are considered, where �=0.001 corresponds to the
single relaxation-time BGK case ��=��.

TABLE I. Lid driven cavity stability test. Some numerical tests are reported for different kinematic
viscosity � �and consequently Reynolds number Re� for both standard BGK and proposed entropic quasi-
equilibrium model �EQE�. The bulk viscosity is fixed to �=10� and it is a pure numerical artifact. The
minimum number min�N� of points along each coordinate for running stable simulations is reported. The
latter corresponds to the maximum Mach number tolerated by the numerical scheme, namely max �Ma�,
where Ma=uL /c, uL is the lid velocity, and c is the lattice speed. In the numerical simulations, Ma=0.01 Re
Kn is adopted.

Re �

BGK �=� EQE�=10�

Min �N� Max �Ma� Max �Kn� Min �N� Max �Ma� Max �Kn�

1000 1.0�10−3 50 0.2 0.0200 25 0.4 0.0400

2000 5.0�10−4 100 0.2 0.0100 50 0.4 0.0200

3000 3.3�10−4 150 0.2 0.0067 75 0.4 0.0133

4000 2.5�10−4 200 0.2 0.0050 100 0.4 0.0100

5000 2.0�10−4 250 0.2 0.0040 125 0.4 0.0080
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number Re=uLL /�, it is possible to derive the following re-
lation �analogous to the von Karman relation�:

Ma =


3�t
Re Kn, �46�

where Kn=�x /L=1 /N and N is the number of grid points
along length L �the lattice Knudsen number�. From the
asymptotic analysis of the LB model based on the assump-
tion that both Kn and Ma are small, it is possible to prove
that there are two terms in the recovered macroscopic equa-
tions, in addition to those prescribed by the incompressible
Navier-Stokes equations, which are respectively O�Kn2� and
O�Ma Kn� �24�. Hence, two strategies are possible. In case
one wants to obtain a second-order numerical method with
regards to the space resolution, i.e., with regards to Kn, tak-
ing into account Eq. �46�, Ma�Kn must be selected, which
means  f /�t�O�1�, or equivalently keeping  f /�t fixed on
different meshes. The latter corresponds to the so-called dif-
fusive �or parabolic� scaling. On the other hand, in case of
advective �or hyperbolic� scaling, one wants to keep Ma in-
dependent of lattice Kn, then  f becomes constant indepen-
dent of the considered mesh. Below we use diffusive scaling
when setting up the parameters of various simulations.

In particular, in Table I, since Ma/Kn becomes a constant
in the diffusive scaling, then any �stability and/or accuracy�
constraint on Kn=1 /N can be formulated also in terms of
Ma. Hence in Table I, the enhancement of the stability per-
formance of the scheme can also be expressed as the ability
to deal with much larger Mach numbers, i.e., to perform
much faster simulations. Obviously in this case, deviations
from the Maxwell-Boltzmann equilibrium may spoil the ac-
curacy of the numerical solutions.

Concerning the latter point, it is worth the effort to point
out that the stability threshold appears quite earlier than the
non-negativity condition for the generalized population list.
Recalling the definition given by Eq. �3�, it is easy to derive
the positivity condition as Ma�2 /3�0.8165. However the
instability for EQE model appears at roughly Ma=0.4. This
means that, at least for the present test case, the stability
region fits well into the non-negativity region, where the
generalized Maxwellian given by Eq. �3� is defined.

B. Stability and accuracy test with regards to vortex locations

Clearly a fair comparison among the numerical schemes
should take into account the actual accuracy as well. In fact,
improving the bulk viscosity may allows one to adopt
rougher meshes but reducing the recovered accuracy. In or-
der to check this, let us consider the case Re=5000. For this
Reynolds number, it is well known that four main vortexes
appear in the lid driven cavity, namely, upper-left �U-L�,
mid-central �M-C�, lower-left �L-L�, and lower-right �L-R�,
see Fig. 4. It is possible to compute the actual “centers” of
the vortexes as the local extrema of the stream function �,
defined as

ux =
��

�y
, uy = −

��

�x
. �47�

Let us consider previous calculations concerning the loca-
tions of the main vortexes �25–28�. Let us define xq
= �xq ,yq�T the vector which locates the center of the vortex q,
where q� �U-L,M-C,L-L,L-R�. Clearly there is no perfect
agreement among the previous references about the vortex
locations. Hence in the following, we consider the reference
values xq

r as the �arithmetic� average of the values reported in
each of the four references �25–28�.

Another problem is related to the effect of the adopted
mesh. If one forces the calculation of the vortex location to
be limited only to the nodes of the adopted mesh, the final
accuracy will depends on both the accuracy of the numerical
velocity field and on the constraint of the available discrete
nodes. Hence the rough meshes are penalized twice. How-
ever the first issue is relevant while the second is actually an
overconstraint which can be avoided. In fact, in the follow-
ing calculations, all the numerical velocity fields �coming
from the numerical scheme with different meshes� are inter-
polated first on the same finer mesh, then the vortex location
is searched for on the finer mesh �by a standard tool for
locating the extrema of the stream function�. In this way,
even though the calculations are performed with different
meshes, the final output after postprocessing, in terms of
vortex location, is produced with the same discrete grid. The
latter postprocessing step makes all the simulations fairly
comparable with each other. The postprocessing is composed
of the following steps: interpolation on the finer mesh, com-
putation of the stream function and location of the extrema
of the stream function, which are actually the vortex loca-
tions.

Let us denote xq the location of the vortex q, according to
the adopted numerical scheme and after postprocessing.
Hence it is possible to introduce the following errors: the
vortex error Eq for the qth vortex, namely,

Eq =
�xq − xq

r�
�xq

r�
, �48�

where � · � is the L2-norm and Em is the �arithmetic� mean
error. In Table II, the results of the numerical simulations are
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FIG. 4. Streamlines for the lid driven cavity flow with Re
=5000, t0=100 and mesh 150�150. The kinematic viscosity is
fixed to �=0.0002, while the bulk viscosity to �=0.002. Four main
vortexes appear: upper-left �U-L�, mid-central �M-C�, lower-left
�L-L� and lower-right �L-R�.
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reported. Essentially for the present test, EQE model is able
to deal with a very coarse mesh 125�125, which is roughly
one fourth of the minimum mesh for the BGK model,
namely, 250�250. However, in terms of accuracy, this
coarse mesh is not able to produce the same performance for
computing the vortex locations, even though the numerical
velocity field is interpolated on the same fine mesh. Hence
the mesh of the EQE must be refined. It comes out that the
EQE model, with a rougher mesh 1702�2502 /2 than that
used by the BGK model, can achieve similar accuracy
�2.68%�2.72%�. In Fig. 5, the locations of the main vor-
texes computed by both EQE and BGK are reported and
compared with the reference values. Hence if both stability
and accuracy are concerned, the EQE model can deal with
one half of the mesh required by the BGK model. This ad-
vantage can compensate the additional computational over-
head of the EQE model and it leads to an effective compu-
tational speed-up for EQE model of 2.84 times over the BGK
model. In other words, even though more calculations are
required in each cell because of the Cardano analytical for-
mula, the reduced number of cells is at the end still the
leading advantage. It is not surprising that EQE can achieve
better accuracy with rougher meshes. In fact the errors are
due mainly to the compressible waves traveling in the do-
main. Since the BGK model with 250�250 mesh is still
quite close to the stability threshold, it is clear that the com-
pressibility waves are still relevant there, more than what
happens for the EQE model which is able to effectively
damp them.

Finally, in Table II, the results obtained by the expanded
model in the low Mach number limit �LQE� are reported as
well for the mesh 170�170. First of all, the LQE model is
roughly 50% faster than the EQE model, because the former
avoids the cumbersome calculations due to the Cardano for-
mula. Moreover, it is even more accurate than the full

TABLE II. Lid driven cavity stability and accuracy test. The Reynolds number is Re=5000, the kinematic viscosity �=0.0002 and the
bulk viscosity �=0.002. Different meshes are considered. For each numerical calculation, the locations of the four main vortexes �see Fig.
4� are computed by postprocessing on the same finer mesh 250�250 and compared with some reference values �25–28�. The error on the
location of each vortex q, namely, Eq, is computed by Eq. �48�, while Em is the arithmetic average among all the errors. All the models were
run on same hardware. Actual run time is normalized to the run time taken by the EQE model on the 170�170 grid.

Run time

Vortex locations Errors on vortex locations �%�

Axis M-C L-L L-R U-L M-C L-L L-R U-L Mean

References �25–28� NA xq
r 0.51393333 0.07040000 0.82213333 0.06460000 0.00 0.00 0.00 0.00 0.00

yq
r 0.53460000 0.14343333 0.07666667 0.90805000

EQE 125�125 0.35 xq 0.51004016 0.07630522 0.81124498 0.05220884 1.15 12.41 1.61 1.36 4.13

yq 0.54216867 0.12449799 0.08433735 0.90763052

EQE 150�150 0.61 xq 0.51807229 0.07630522 0.80321285 0.06425703 0.74 12.41 2.29 0.49 3.98

yq 0.53815261 0.12449799 0.07630522 0.90361446

EQE 170�170 1.00 xq 0.52208835 0.07228916 0.80321285 0.06508876 1.20 6.93 2.29 0.30 2.68

yq 0.53815261 0.13253012 0.07630522 0.90532544

LQE 170�170 0.65 xq 0.51004016 0.07228916 0.80722892 0.06425703 0.80 4.47 1.88 0.06 1.80

yq 0.53012048 0.13654618 0.07228916 0.90763052

EQE 200�200 2.06 xq 0.52208835 0.06827309 0.80722892 0.06425703 1.10 4.51 1.81 0.06 1.87

yq 0.53413655 0.13654618 0.07630522 0.90763052

EQE 250�250 4.97 xq 0.52208835 0.06827309 0.80321285 0.06425703 1.10 2.24 2.35 0.06 1.44

yq 0.53413655 0.14056225 0.07228916 0.90763052

ELBa 320�320 NA xq 0.51750000 0.07730000 0.80560000 0.06640000 0.48 6.35 2.09 0.22 2.29

yq 0.53500000 0.13600000 0.07160000 0.90900000

BGK 250�250 2.84 xq 0.51807229 0.07630522 0.80722892 0.06425703 1.16 7.76 1.88 0.06 2.72

yq 0.54216867 0.13253012 0.07228916 0.90763052

aReference �29�.
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FIG. 5. Streamlines for the lid driven cavity flow with Re
=5000, �=0.0002 ��=0.002 for the EQE model only�. The refer-
ence locations xq

r for the four main vortexes are reported �25–28�
�square markers�. Moreover the computed locations xq based on the
postprocessing are reported too for both BGK �circle markers� and
EQE model �diamond markers�.
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entropy-based model �1.80%�2.68%�, because it involves a
smaller number of operations and hence it is less effected by
the round-off errors. It is worth to recall that the difference
between LQE and EQE is O�Ma4�, i.e., it is 2 orders of
magnitude smaller than the accuracy of the numerical
scheme in case of diffusive scaling, when the Mach number
is selected proportional to the Knudsen number. For these
reasons, use of LQE in practical simulations is recom-
mended, even though more test cases need to be studied.

C. Stability and accuracy test with a global solution

Even though the computation of the vortex locations is a
standard procedure for checking the accuracy of the consid-
ered numerical scheme, we also compared globally the re-
covered solutions with a reference solution. The computa-
tional domain and the physical parameters are identical to
those considered in the previous section, i.e., L=1, t0=100,
�=0.0002, �=10� �for EQE and LQE�, uL=1, Re=5000.

The reference solution has been obtained by means of a
commercial computational fluid-dynamics �CFD� code FLU-

ENT®, based on the finite-volume method �FVM�, which is a
quite popular tool in computational engineering. First of all,
the reference solution was computed by using double preci-
sion representation, i.e., binary floating-point number format
using 64 bits, for reducing the effects of the machine round-
off precision. Concerning the spatial discretization, the
second-order up-wind was considered for the discretization
of the momentum fluxes. For the resolution of the discrete
equations, a segregated approach was used; i.e., the continu-
ity and momentum equations were solved alternatively by
means of an iterative solution up to convergence. The SIM-

PLEC algorithm �30� was used for the pressure-velocity cou-
pling: essentially this algorithm is used to solve the Poisson
equation coming out by combining the momentum equation
with the divergence-free condition for the low Mach number
limit. As a convergence criterion, it was required that all the
residuals are smaller than 10−7, i.e., the imbalances in all the
discretized equations summed over all the computational
cells are smaller than 10−7 during the final convergence step.
The reference solution is indicated by �ux

r ,uy
r , pr��x ,y�, where

ux
r, uy

r are the velocity components, pr is the pressure and x
= �x ,y�T�G�N� with G�N� meaning the computational grid
made of N�N homogeneously spanned �collocated� compu-
tational nodes. The values on the collocated grid are com-
puted by interpolation because the commercial code uses a
staggered grid �as popular for avoiding checkerboard insta-
bility in FVM�. In particular, the grid 1025�1025 was used
for computing the reference solution in the following calcu-
lations. The actual reference for a rougher mesh N�1025
was obtained by means of bicubic interpolation, i.e., cubic
interpolations along both Cartesian axes.

In order to characterize properly the behavior of
the proposed schemes, an extensive simulation plan
has been defined. The Knudsen number, i.e., the
spatial resolution, was selected such that Kn
� �1 /128,1 /160,1 /192,1 /224,1 /256	 �linearly spanned�,
or equivalently the computational nodes along each
Cartesian axis was selected such that N

� �128,160,192,224,256	. Taking into account Eq. �46� and
adopting the diffusive scaling, the Mach number was tuned
by means of the constant  f /�t, which must be mesh inde-
pendent. In particular, the Mach number was selected such
that Ma� �0.02,0.04,0.1,0.2,0.4	 �roughly logarithmically
spanned�. Finally, for each combination of the previous pa-
rameters, three schemes were tested: the standard lattice
BGK, EQE, and LQE. This leads to a simulation plan made
of a total 5�5�3=75 runs.

The global errors were computed for different meshes,
namely,

Eux =
1

uL
 1

N2 �
x�G�N�

�ux − ux
r�2, �49�

Euy =
1

uL
 1

N2 �
x�G�N�

�uy − uy
r�2, �50�

Ep =
1

uL
2 1

N2 �
x�G�N�

�p − pr�2, �51�

where the pressure p=cs
2��−�0� has been normalized in or-

der to have the same mean of the reference solution pr. The
numerical results are reported in Table III. First of all, it is
not surprising that an unstable behavior may appear for low
values of the Mach number. In fact, recalling Eq. �46�, the
quantity  f /�t �mesh independent under the diffusive scal-
ing�, namely,

 f

�t
= 3

Ma

Re Kn
, �52�

becomes small when the Mach number is small. Conse-
quently, taking into account Eq. �43�, � f tends to 2, which is
the upper stability threshold for the evolution Eq. �39�, in
terms of transformed distribution function g. Comparing dif-
ferent numerical schemes, EQE and LQE show a wider sta-
bility region since these schemes allow one to consider quite
rough meshes up to N=128, while the standard BGK re-
quires at least N=256. Moreover, EQE is characterized by
better accuracy in recovering the global solution than LQE
and, as expected, the discrepancy between these schemes in-
creases as long as the Mach number increases. Considering
the EQE scheme, it is possible to recover the same mean
accuracy of the best lattice BGK simulation �1 /Kn=256 and
Ma=0.20�, i.e., Em=1.2%, by using a rougher mesh with
1 /Kn=192 and Ma=0.20, which corresponds roughly to half
of the previous mesh.

Finally, it is interesting to analyze the mean errors for
EQE on the parameter plane given by �Kn, Ma�, as reported
in Table IV, where the best results are shown in bold. For
any mesh, i.e., for any numerical Knudsen number, there is
an optimal Mach number which yields the most accurate
results. Larger Mach numbers tend to violate the assumption
used to derive the discrete local equilibrium, while smaller
Mach numbers yield smaller dimensionless viscosities ex-
pressed in lattice units, which lead to more inaccurate nu-
merical results. This optimal Mach number slightly increases
for rougher meshes. The above systematic simulation plan
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TABLE III. Lid driven cavity stability and global accuracy test. The Reynolds number is Re=5000, the
kinematic viscosity �=0.0002 and the bulk viscosity �=0.002 �for EQE and LQE�. Different meshes �and
consequently different Knudsen numbers� N=1 /Kn and different Mach numbers are considered. The global
errors on the velocity components Eux and Euy and on pressure Ep are computed by Eq. �49�, while Em is the
arithmetic average among all the previous errors. The label “unstable” means that the calculation could not be
performed with that combination of simulation parameters.

1/Kn Scheme Error

Ma

0.02 0.04 0.10 0.20 0.40

128 BGK Unstable

EQE Eux Unstable 0.024998 0.019096 0.021838

Euy Unstable 0.025482 0.019629 0.021678

Ep Unstable 0.022485 0.013274 0.008023

Em Unstable 0.024322 0.017333 0.017180

LQE Eux Unstable 0.025654 0.021368 0.025859

Euy Unstable 0.026074 0.021697 0.027291

Ep Unstable 0.022584 0.013853 0.011115

Em Unstable 0.024771 0.018973 0.021422

160 BGK Unstable

EQE Eux 0.020997 0.019602 0.017802 0.015361 0.017890

Euy 0.021505 0.020143 0.018389 0.016036 0.017647

Ep 0.060736 0.036427 0.016648 0.010302 0.006782

Em 0.034413 0.025391 0.017613 0.013899 0.014106

LQE Eux 0.021026 0.019723 0.018533 0.017777 0.020943

Euy 0.021532 0.020251 0.019038 0.018193 0.021381

Ep 0.060735 0.036431 0.016770 0.010955 0.009773

Em 0.034431 0.025468 0.018113 0.015641 0.017365

192 BGK Unstable

EQE Eux 0.017678 0.016956 0.015552 0.013709 0.017191

Euy 0.018232 0.017524 0.016141 0.014271 0.016394

Ep 0.052492 0.029327 0.013544 0.008573 0.005709

Em 0.029467 0.021269 0.015079 0.012184 0.013098

LQE Eux 0.017710 0.017083 0.016296 0.015929 0.020282

Euy 0.018260 0.017635 0.016820 0.016423 0.020556

Ep 0.052491 0.029335 0.013680 0.009226 0.008980

Em 0.029487 0.021351 0.015599 0.013859 0.016606

224 BGK Unstable

EQE Eux 0.016072 0.015457 0.014431 0.012944 0.016608

Euy 0.016653 0.016004 0.014826 0.013269 0.016008

Ep 0.045503 0.024187 0.011551 0.007471 0.004960

Em 0.026076 0.018549 0.013603 0.011228 0.012525

LQE Eux 0.016105 0.015583 0.015152 0.015011 0.019737

Euy 0.016682 0.016120 0.015555 0.015426 0.019777

Ep 0.045504 0.024199 0.011690 0.008124 0.008440

Em 0.026097 0.018634 0.014132 0.012854 0.015984
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allows one to recover a complete picture of the enhanced
numerical stability of the proposed schemes, without ne-
glecting the effects on accuracy as well.

V. CONCLUSIONS

Taking advantage of the analytically generalized Maxwell
distribution function, a quasiequilibrium model �EQE� is
proposed, which enjoys both the H theorem and the addi-
tional free-tunable parameter for controlling the bulk viscos-
ity and enhancing the stability of the model, when the incom-
pressible limit is the only concern. A simpler model based on
a proper expansion with regards to the low Mach number
limit is derived as well �LQE�. Because all the results above
are derived in a closed form, numerical implementations of
both models is straightforward, is not essentially different
from the standard LBGK scheme, and the practical details
are reported. Extensive numerical tests concerning the lid
driven cavity are considered in order to verify the effective
transport coefficients and the enhancement of the stability
region.

Since the lid driven cavity test involves a singular pres-
sure field, this test is particularly suitable for checking the
stability of a numerical scheme dealing with incompressible
limit. We started first by considering some specific features
of the flow concerning the main vortexes. It comes out that
the proposed EQE model, with a rougher mesh 1702

�2502 /2 than that used by the BGK model, can achieve the
same accuracy �2.68%�2.72%� in computing the main vor-
tex locations. This leads to an effective computational
speed-up of 2.84 in terms of run time. The results are even
more encouraging for the model expanded in the low Mach
number limit �LQE�. In this test, the LQE model is roughly
50% faster than the EQE model, because the first avoids the
cumbersome calculations due to the Cardano formula. More-
over, it is even more accurate than the EQE model �1.80%
�2.68%� with the same mesh �170�170�, because it in-
volves a smaller number of operations and hence it is less
effected by the round-off errors. For the previous reasons, the
LQE model leads to an effective computational speed-up of
4.37 in terms of run time, with regards to the usual lattice
BGK model.

TABLE III. �Continued.�

1/Kn Scheme Error

Ma

0.02 0.04 0.10 0.20 0.40

256 BGK Eux Unstable 0.014487 0.019473

Euy Unstable 0.014560 0.019406

Ep Unstable 0.007048 0.007872

Em Unstable 0.012031 0.015583

EQE Eux 0.015062 0.014615 0.013801 0.012247 0.016124

Euy 0.015539 0.014948 0.013954 0.012617 0.015883

Ep 0.039344 0.020624 0.010162 0.006665 0.004403

Em 0.023315 0.016729 0.012639 0.010509 0.012137

LQE Eux 0.015094 0.014738 0.014543 0.014439 0.019189

Euy 0.015570 0.015073 0.014676 0.014592 0.019095

Ep 0.039345 0.020637 0.010309 0.007368 0.008023

Em 0.023336 0.016816 0.013176 0.012133 0.015436

TABLE IV. Lid driven cavity stability and global accuracy test: parameter plane for EQE. The Reynolds
number is Re=5000, the kinematic viscosity �=0.0002 and the bulk viscosity �=0.002. Different meshes
�and consequently different Knudsen numbers� N=1 /Kn and different Mach numbers are considered. The
arithmetic average Em among all global errors is reported and the best results are reported in bold. The label
“unstable” means that the calculation could not be performed with that combination of simulation parameters.

Ma

N=1 /Kn

256 224 192 160 128

0.40 0.015436 0.012525 0.013098 0.014106 0.017180

0.20 0.012133 0.011228 0.012184 0.013899 0.017333

0.10 0.013176 0.013603 0.015079 0.017613 0.024322

0.04 0.016816 0.018549 0.021269 0.025391 Unstable

0.02 0.023315 0.026076 0.029467 0.034413 Unstable
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For investigating systematically these results, an exten-
sive simulation plan has been defined, consisting of five val-
ues for the Mach number, five values for the numerical
Knudsen number and comparing the standard lattice BGK
with the proposed schemes �both EQE and LQE�. Moreover
the accuracy in recovering the global solution was consid-
ered too, by comparing the numerical results with a reference
solution obtained by a popular commercial tool. It came out
that EQE is characterized by better accuracy in recovering
the global solution than LQE and, as expected, the discrep-
ancy between these schemes increases as far as the Mach
number increases too. Considering the EQE scheme, it is
possible to recover the same mean accuracy of the best lat-
tice BGK simulation �1 /Kn=256 and Ma=0.20� by using a
rougher mesh with 1 /Kn=192 and Ma=0.20, which corre-
sponds again roughly to half of the previous mesh. Hence
also the systematic simulation plan confirms the previous
results about some specific features of the flow.
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APPENDIX: GENERALIZATION TO 3D CASE BY D3Q27
LATTICES

Since the quasiequilibrium is the product of one-
dimensional functions in each direction �18�, it is very
simple to solve the minimization problem in the 3D case,
namely, for the D3Q27 lattice,

fG�0,0,0� =
�

c6 �c2 − Pxx��c2 − Pyy��c2 − Pzz� ,

fG��1,0,0� =
�

2c6 �Pxx � cux��c2 − Pyy��c2 − Pzz� ,

fG�0,�1,0� =
�

2c6 �c2 − Pxx��Pyy � cuy��c2 − Pzz� ,

fG�0,0,�1� =
�

2c6 �c2 − Pxx��c2 − Pyy��Pzz � cuz� ,

fG��1,�1,0� =
�

4c6 �Pxx � cux��Pyy � cuy��c2 − Pzz� ,

fG�0,�1,�1� =
�

4c6 �c2 − Pxx��Pyy � cuy��Pzz � cuz� ,

fG��1,0�1� =
�

4c6 �Pxx � cux��c2 − Pyy��Pzz � cuz� ,

fG��1,�1�1� =
�

8c6 �Pxx � cux��Pyy � cuy��Pzz � cuz� .

�A1�

In order to ensure the positivity of the latter fG, it is
required that P�� where �= �P :c�ux�� Pxx�c2 ,c�uy�

� Pyy �c2 ,c�uz�� Pzz�c2	 is a convex box in the space of
parameters for each velocity u. Note that, when setting �z
=0 in the nine populations, fG�0,0,0�, fG��1,0,0�, fG�0,�1,0�, and
fG��1,�1,0� �Eq. �A1��, we obtain the quasiequilibrium on the
two-dimensional D2Q9 lattice, given by Eq. �30�.

With the help of fG �Eq. �A1��, let us derive a constrained
equilibrium fC which brings the H-function to a minimum
among all the population lists with a fixed trace of the pres-
sure tensor T�P�= Pxx+ Pyy + Pzz. In terms of the parameter
set �, this is equivalent to require that the point C
= �Pxx

C , Pyy
C , Pzz

C � belongs to a surface portion AT= �P
�� : Pxx+ Pyy + Pzz=T	, and the constrained equilibrium C is
that minimizing the function HG �Eq. �4�� on AT. Since the
restriction of a convex function to a line is also convex, the
solution to the latter problem exists and is found by

dHG

dPxx
= � �HG

�Pxx
−

�HG

�Pzz
�

Pzz=T�−Pxx

= 0, �A2�

dHG

dPyy
= � �HG

�Pyy
−

�HG

�Pzz
�

Pzz=T�−Pyy

= 0 �A3�

where T�=T− Pyy and T�=T− Pxx. It is possible to compute
each of the partial derivatives involved in the previous ex-
pressions by the following rule:

�HG

�P��

=
�

c2 ln
a−�P���a+�P���

ao�P���
=

�

c2 ln
P��

2 − c2u�
2

�c2 − P���/2
.

�A4�

Each of Eqs. �A2� and �A3� yields to a cubic equation in
terms of the normal stress difference N�= Pxx

C − Pzz
C and N�

= Pyy
C − Pzz

C respectively. Each cubic equation admits a solu-
tion like that described by Eq. �9�. In particular, in the low
Mach number limit, as already done in Eq. �32�, it is possible
to approximate exact solutions by

Pxx
C �u,T� =

�T − Pyy
C � + �ux

2 − uz
2�

2
+ O�Ma4� ,

Pyy
C �u,T� =

�T − Pxx
C � + �uy

2 − uz
2�

2
+ O�Ma4� ,

Pzz
C �u,T� =

�T − Pxx
C � − �uy

2 − uz
2�

2
+ O�Ma4�

=
�T − Pyy

C � − �ux
2 − uz

2�
2

+ O�Ma4� . �A5�

Clearly the previous conditions are not linearly independent,
or equivalently the rank of the previous system of equations
is actually equal to three, and it admits the following solu-
tions:

P��
C �u,T� =

T

3
+ u�

2 −
ux

2 + uy
2 + uz

2

3
+ O�Ma4� , �A6�

which corresponds to Eq. �32� in the two-dimensional case.
Further details about the three-dimensional case are reported
in Ref. �18�.
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