The proper application of statistics, machine learning, and data-mining techniques in routine clinical diagnostics to classify diseases using their genetic expression profile is still a challenge. One critical issue is the overall inability of most state-of-the-art classifiers to identify out-of-class samples, i.e., samples that do not belong to any of the available classes. This paper shows a possible explanation for this problem and suggests how, by analyzing the distribution of the class probability estimates generated by a classifier, it is possible to build decision rules able to significantly improve its performances.

Gene expression classifiers and out-of-class samples detection / Benso, Alfredo; DI CARLO, Stefano; Politano, GIANFRANCO MICHELE MARIA. - STAMPA. - (2009), pp. 1-5. (Intervento presentato al convegno IEEE 9th International Conference on Information Technology and Applications in Biomedicine (ITAB) tenutosi a Larnaca, CY nel 5-7 Nov. 2009) [10.1109/ITAB.2009.5394401].

Gene expression classifiers and out-of-class samples detection

BENSO, Alfredo;DI CARLO, STEFANO;POLITANO, GIANFRANCO MICHELE MARIA
2009

Abstract

The proper application of statistics, machine learning, and data-mining techniques in routine clinical diagnostics to classify diseases using their genetic expression profile is still a challenge. One critical issue is the overall inability of most state-of-the-art classifiers to identify out-of-class samples, i.e., samples that do not belong to any of the available classes. This paper shows a possible explanation for this problem and suggests how, by analyzing the distribution of the class probability estimates generated by a classifier, it is possible to build decision rules able to significantly improve its performances.
2009
9781424453795
File in questo prodotto:
File Dimensione Formato  
2009-ITAB-Rule.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2284755
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo