In recent years the development of unmanned platforms has exasperated the concept of design and planning in aeronautics: for unmanned flight, in fact, the aerial segment is no longer the central issue and concepts like mission planning, mission and on board sensor management are becoming more and more critical. The majority of these functionalities have been separated from the aerial segment and transferred to the Ground Station (GS) which is one of the key elements of the Unmanned Aerial System (UAS) together with the Communication Link and the Launch and Recovery Element. Safety requirements are thus transferred to some of the GS components, especially to those which perform critical functions. This has contributed to increase the CS complexity. Regardless of the UAV architecture and overall dimension, in fact, the pilot must be able to operate under the same condition of situation awareness of a correspondent manned aircraft. In this context, advanced vision systems and innovative human-machine interfaces must be designed, to enable the pilot to process the flight data while accomplishing the mission task. This paper presents a technological solutions adopted for the Elettra-Twin-Flyer, a lighter-than-air unmanned platform, developed for civil applications.
Mobile Ground Station for the Unmanned Elettra-Twin-Flyer Airship / Battipede, Manuela; Vazzola, Matteo; Gili, Piero. - ELETTRONICO. - RTO-S-SCI-202:(2009), pp. 1-9. (Intervento presentato al convegno RTO NATO SYSTEMS CONCEPTS AND INTEGRATION PANEL tenutosi a Neubiberg, Germany nel 30 June – 02 July 2009).
Mobile Ground Station for the Unmanned Elettra-Twin-Flyer Airship
BATTIPEDE, Manuela;VAZZOLA, MATTEO;GILI, Piero
2009
Abstract
In recent years the development of unmanned platforms has exasperated the concept of design and planning in aeronautics: for unmanned flight, in fact, the aerial segment is no longer the central issue and concepts like mission planning, mission and on board sensor management are becoming more and more critical. The majority of these functionalities have been separated from the aerial segment and transferred to the Ground Station (GS) which is one of the key elements of the Unmanned Aerial System (UAS) together with the Communication Link and the Launch and Recovery Element. Safety requirements are thus transferred to some of the GS components, especially to those which perform critical functions. This has contributed to increase the CS complexity. Regardless of the UAV architecture and overall dimension, in fact, the pilot must be able to operate under the same condition of situation awareness of a correspondent manned aircraft. In this context, advanced vision systems and innovative human-machine interfaces must be designed, to enable the pilot to process the flight data while accomplishing the mission task. This paper presents a technological solutions adopted for the Elettra-Twin-Flyer, a lighter-than-air unmanned platform, developed for civil applications.File | Dimensione | Formato | |
---|---|---|---|
SCI_33_2009.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
457.96 kB
Formato
Adobe PDF
|
457.96 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2261838
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo