Rapid Prototyping and Tooling are playing a more and more important role in the achievement of compressed time-to-market solutions, where prototype parts and tools are produced directly from the CAD model. In particular, Selective Laser Sintering (SLS) of metal powders with liquid phase is frequently applied for the production of inserts for injection moulding of plastic parts. An experimental campaign has been planned to investigate the surface finish and mechanical performances of Direct Laser Sintering technique, with particular regard to the effect of the laser sintering strategy on the anisotropy of the final part. Tensile specimens of DirectMetal 20 and DirectSteel 20 materials have been produced, with different orientations in regard to laser path. Rupture surfaces after the tensile tests were observed at the SEM, in order to understand failure mechanisms, whereas the observation of polished sections helped investigating joining phenomena between the particles. The proposed experimental methodology allowed correlating the macroscopic performances to the micro-mechanisms ruling the process, proving that no considerable differences can be noticed between samples produced in the X and Y direction within the plane of powder deposition

Direct Laser Sintering of Metal Parts: Characterisation and Evaluation of Joining Mechanisms / Iuliano, Luca; Atzeni, Eleonora; Gatto, A.; Bassoli, E.. - In: MATERIALS RESEARCH SOCIETY SYMPOSIA PROCEEDINGS. - ISSN 0272-9172. - ELETTRONICO. - 860:(2004), pp. 7-18. (Intervento presentato al convegno 2004 MRS Fall Meeting tenutosi a Boston, MA, United States nel 29 November - 3 December).

Direct Laser Sintering of Metal Parts: Characterisation and Evaluation of Joining Mechanisms

IULIANO, Luca;ATZENI, ELEONORA;
2004

Abstract

Rapid Prototyping and Tooling are playing a more and more important role in the achievement of compressed time-to-market solutions, where prototype parts and tools are produced directly from the CAD model. In particular, Selective Laser Sintering (SLS) of metal powders with liquid phase is frequently applied for the production of inserts for injection moulding of plastic parts. An experimental campaign has been planned to investigate the surface finish and mechanical performances of Direct Laser Sintering technique, with particular regard to the effect of the laser sintering strategy on the anisotropy of the final part. Tensile specimens of DirectMetal 20 and DirectSteel 20 materials have been produced, with different orientations in regard to laser path. Rupture surfaces after the tensile tests were observed at the SEM, in order to understand failure mechanisms, whereas the observation of polished sections helped investigating joining phenomena between the particles. The proposed experimental methodology allowed correlating the macroscopic performances to the micro-mechanisms ruling the process, proving that no considerable differences can be noticed between samples produced in the X and Y direction within the plane of powder deposition
2004
1558998128
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1413404
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo