CALDAROLA, DEBORA

CALDAROLA, DEBORA  

Dipartimento di Automatica e Informatica  

040421  

Mostra records
Risultati 1 - 7 di 7 (tempo di esecuzione: 0.005 secondi).
Citazione Data di pubblicazione Autori File
Collaborative Visual Place Recognition through Federated Learning / Dutto, Mattia; Berton, Gabriele; Caldarola, Debora; Fani, Eros; Trivigno, Gabriele; Masone, Carlo. - (2024), pp. 4215-4225. (Intervento presentato al convegno IEEE / CVF Computer Vision and Pattern Recognition Conference Workshop tenutosi a Seattle (USA) nel 17-18 June 2024) [10.1109/CVPRW63382.2024.00425]. 1-gen-2024 Dutto, MattiaBerton, GabrieleCaldarola, DeboraFani, ErosTrivigno, GabrieleMasone, Carlo Dutto_Collaborative_Visual_Place_Recognition_through_Federated_Learning_CVPRW_2024_paper.pdfCollaborative_Visual_Place_Recognition_through_Federated_Learning.pdf
Learning Across Domains and Devices: Style-Driven Source-Free Domain Adaptation in Clustered Federated Learning / Shenaj, Donald; Fani, Eros; Toldo, Marco; Caldarola, Debora; Tavera, Antonio; Michieli, Umberto; Ciccone, Marco; Zanuttigh, Pietro; Caputo, Barbara. - (2023), pp. 444-454. (Intervento presentato al convegno IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) tenutosi a Waikoloa, Hawaii (USA) nel 02-07 January 2023) [10.1109/WACV56688.2023.00052]. 1-gen-2023 Fani,ErosCaldarola,DeboraTavera,AntonioCiccone,MarcoCaputo,Barbara + Learning_Across_Domains_and_Devices_Style-Driven_Source-Free_Domain_Adaptation_in_Clustered_Federated_Learning.pdf2210.02326_compressed.pdf
Window-based Model Averaging Improves Generalization in Heterogeneous Federated Learning / Caldarola, Debora; Caputo, Barbara; Ciccone, Marco. - ELETTRONICO. - (2023), pp. 2255-2263. (Intervento presentato al convegno International Conference on Computer Vision Workshop 2023 tenutosi a Parigi (FR) nel 02-06 October 2023) [10.1109/ICCVW60793.2023.00240]. 1-gen-2023 Caldarola, DeboraCaputo, BarbaraCiccone, Marco Caldarola_Window-Based_Model_Averaging_Improves_Generalization_in_Heterogeneous_Federated_Learning_ICCVW_2023_paper.pdfWindow-based_Model_Averaging_Improves_Generalization_in_Heterogeneous_Federated_Learning.pdf
FedDrive: Generalizing Federated Learning to Semantic Segmentation in Autonomous Driving / Fantauzzo, Lidia; Fani', Eros; Caldarola, Debora; Tavera, Antonio; Cermelli, Fabio; Ciccone, Marco; Caputo, Barbara. - (2022), pp. 11504-11511. (Intervento presentato al convegno 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) tenutosi a Kyoto (JPN) nel 23-27 October 2022) [10.1109/IROS47612.2022.9981098]. 1-gen-2022 Fantauzzo,LidiaFani',ErosCaldarola,DeboraTavera,AntonioCermelli,FabioCiccone,MarcoCaputo,Barbara FedDrive__Generalizing_Federated_Learning_to_Semantic_Segmentation_in_Autonomous_Driving.pdfFedDrive_Generalizing_Federated_Learning_to_Semantic_Segmentation_in_Autonomous_Driving.pdf
Improving Generalization in Federated Learning by Seeking Flat Minima / Caldarola, Debora; Caputo, Barbara; Ciccone, Marco. - XXIII:(2022), pp. 654-672. (Intervento presentato al convegno Computer Vision–ECCV 2022: 17th European Conference tenutosi a Tel Aviv nel 23-27 Ottobre 2022) [10.1007/978-3-031-20050-2_38]. 1-gen-2022 Caldarola,DeboraCaputo,BarbaraCiccone,Marco 2203.11834.pdf978-3-031-20050-2_38.pdf
Speeding up Heterogeneous Federated Learning with Sequentially Trained Superclients / Zaccone, Riccardo; Rizzardi, Andrea; Caldarola, Debora; Ciccone, Marco; Caputo, Barbara. - (2022), pp. 3376-3382. (Intervento presentato al convegno 26th International Conference on Pattern Recognition (ICPR) tenutosi a Montréal, Québec (Canada) nel 21-25 August 2022) [10.1109/ICPR56361.2022.9956084]. 1-gen-2022 Riccardo ZacconeDebora CaldarolaMarco CicconeBarbara Caputo + 2201.10899.pdfSpeeding_up_Heterogeneous_Federated_Learning_with_Sequentially_Trained_Superclients.pdf
Cluster-driven Graph Federated Learning over Multiple Domains / Caldarola, Debora; Mancini, Massimiliano; Galasso, Fabio; Ciccone, Marco; Rodolà, Emanuele; Caputo, Barbara. - ELETTRONICO. - (2021), pp. 2743-2752. (Intervento presentato al convegno Workshop Learning from Limited and Imperfect Data in IEEE Conference on Computer Vision and Pattern Recognition tenutosi a Nashville, TN (USA) nel 19-25 June 2021) [10.1109/CVPRW53098.2021.00309]. 1-gen-2021 Debora CaldarolaMarco CicconeBarbara Caputo + Cluster-driven_Graph_Federated_Learning_over_Multiple_Domains_LLID21.pdfCluster-driven_Graph_Federated_Learning_over_Multiple_Domains.pdf