
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Cluster-driven Graph Federated Learning over Multiple Domains / Caldarola, Debora; Mancini, Massimiliano; Galasso,
Fabio; Ciccone, Marco; Rodolà, Emanuele; Caputo, Barbara. - ELETTRONICO. - (2021), pp. 2743-2752. (Intervento
presentato al convegno Workshop Learning from Limited and Imperfect Data in IEEE Conference on Computer Vision
and Pattern Recognition tenutosi a Nashville, TN (USA) nel 19-25 June 2021) [10.1109/CVPRW53098.2021.00309].

Original

Cluster-driven Graph Federated Learning over Multiple Domains

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/CVPRW53098.2021.00309

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2898498 since: 2021-05-06T17:44:08Z

IEEE

Cluster-driven Graph Federated Learning over Multiple Domains

Debora Caldarola*,1, Massimiliano Mancini2, Fabio Galasso3,
Marco Ciccone4, Emanuele Rodolà3, Barbara Caputo1,5

1 Politecnico di Torino, 2 University of Tübingen, 3 Sapienza University of Rome,
4 Politecnico di Milano, 5 Italian Institute of Technology

Abstract

Federated Learning (FL) deals with learning a central
model (i.e. the server) in privacy-constrained scenarios,
where data are stored on multiple devices (i.e. the clients).
The central model has no direct access to the data, but only
to the updates of the parameters computed locally by each
client. This raises a problem, known as statistical hetero-
geneity, because the clients may have different data distri-
butions (i.e. domains). This is only partly alleviated by clus-
tering the clients. Clustering may reduce heterogeneity by
identifying the domains, but it deprives each cluster model
of the data and supervision of others.

Here we propose a novel Cluster-driven Graph Feder-
ated Learning (FedCG). In FedCG, clustering serves to ad-
dress statistical heterogeneity, while Graph Convolutional
Networks (GCNs) enable sharing knowledge across them.
FedCG: i. identifies the domains via an FL-compliant clus-
tering and instantiates domain-specific modules (residual
branches) for each domain; ii. connects the domain-specific
modules through a GCN at training to learn the interactions
among domains and share knowledge; and iii. learns to
cluster unsupervised via teacher-student classifier-training
iterations and to address novel unseen test domains via their
domain soft-assignment scores. Thanks to the unique inter-
play of GCN over clusters, FedCG achieves the state-of-the-
art on multiple FL benchmarks.

1. Introduction
In Federated Learning (FL) [30], a central server model

is trained using data stored locally on multiple client de-
vices. Each client computes a local update of the model and
all the client updates are then aggregated server-side to build
the final model. Since no data ever leaves the client de-
vices, the central model has no direct access to the raw data
itself, a fundamental requirement for privacy-preserving ap-
plications (e.g. medical records, bank transactions, etc.). FL
usually relies upon the key assumption that a single central
model can work efficiently across several users [15, 22].
This may not hold in practice, since distinct clients might

*Corresponding author: debora.caldarola@polito.it

MM
MM

Test clientsTraining clients

M

domain specific
residual modules

shared modules

Figure 1. In a federated scenario, clients and server exchange the
parameters of the model M . Each client has access to its local
data, which can be non-i.i.d. and unbalanced. In the image, each
color identifies a different distribution, i.e. a domain, such as pic-
tures of skyscrapers or sea landscapes. Our model M is made of
domain-agnostic layers (in gray) and a GCN containing domain-
specific parameters, added as residual. According to the domains
of the input images, the corresponding nodes of the GCN are acti-
vated. At test time, new domains can be addressed as a soft com-
bination of the discovered ones, e.g. skyscrapers over the sea.

hold different input distributions, i.e. domains (e.g., people
speaking different languages, pictures taken at different lo-
cations), with their data possibly being not identically dis-
tributed and/or unbalanced. These issues (collectively re-
ferred to as statistical heterogeneity [41]) imply that all i.i.d.

assumptions made in distributed optimization or centralized
training are violated, and modeling the learning problem re-
quires taking into account this new complexity.

To the best of our knowledge, statistical heterogeneity
has been tackled so far with diverse approaches, but none
of them has modeled the direct share of knowledge be-
tween domains. In particular, meta-learning FL techniques
focused on the client-server relation [14, 17, 8, 5]; multi-
task FL methods specialized parts of the models to certain
clients [41, 7]; while clustering-based FL split the clients
and data, learning separate models for them [40, 44].

In this work, we introduce a novel Cluster-driven Graph
Federated Learning (FedCG). FedCG leverages clustering
and its potential to reduce statistical heterogeneity by iden-
tifying homogeneous1. Concurrently, FedCG is the first to
model the domain-domain interaction by means of a GCN,
which connects domain-specific model components. In the
GCN, each node consists of domain-specific model param-
eters, while the adjacency matrix is composed of the inverse
pairwise distances between the domain-specific parameters.
In this way, FedCG not only captures the specificity of each
domain but also allows each domain to benefit from the up-
dates of others, sharing knowledge at training.

Our clustering is based on unsupervised teacher-
student [10] classifier-training iterations and it generalizes
to unseen test-time domains. We cluster by pseudo-labels,
assigned by a teacher and learned by a student, in rounds
of refinements. This is accomplished within the FL train-
ing paradigm, respecting the client’s privacy. This allows to
estimate soft-assignments for unseen novel test domains.

We test our model extensively on several FL bench-
marks, demonstrating results above or competitive with the
state-of-the-art. Our main contributions are:

1. We present the first cluster-driven GCN-based ap-
proach to address statistical heterogeneity in the FL
scenario. Thanks to the interactions among domains
learned by the means of a GCN, knowledge is shared
across domains according to a similarity-based crite-
rion, reducing the risk of overfitting and helping the
less populated domains.

2. We introduce an iterative teacher-student clustering
algorithm designed for the federated learning sce-
nario, which allows adapting to new domains via soft-
assignments. This captures the diverse domain distri-
butions without violating the FL constraints. Each do-
main is assigned model-specific components, trained
via GCN interactions.

3. We evaluate our model on multiple FL benchmarks,
where we compare favorably or on par with respect to
the state-of-the-art.

1Homogeneous stands in this context for groupings that minimize intra-
cluster Vs inter-cluster variance.

2. Related Work
Although FL is a relatively new field of study, it has

aroused great interest in the research community because of
its wide applicability in privacy-constrained scenarios [22].
A simple but effective baseline for FL is the Federated Aver-
aging (FedAvg) algorithm [30], where the central model is
obtained as a weighted average of the models received from
each client after their local updates. FedAvg has been ex-
tensively studied and extended by changing either what is
averaged, or how the local models are considered in each
update. For instance, FedSGD [30] bases the update on
the model’s gradient instead of the weights, while in [19],
the updates are parametrized with fewer variables to re-
duce the uplink communication cost. Similarly, in [38] the
nodes only send a quantized version of their local informa-
tion for reducing the communication overhead. Mohri et
al. [32] propose Agnostic Federated Learning (AFL) in or-
der to reduce the bias towards specific clients. In [21], each
client designs its own local model and the local information
is shared by means of knowledge distillation. Our work
mainly relates to [30], but we explicitly revise the FedAvg
framework to account for statistical heterogeneity.

Statistical heterogeneity in FL Despite their effective-
ness, the previous methods ignore an important problem
of FL, i.e. statistical heterogeneity. Many works [23, 11,
24, 16] study this challenge in terms of convergence analy-
sis and effects of non-i.i.d. data distributions in the feder-
ated scenario. Others address this problem from the meta-
learning [33] and multitask [4] perspectives for building
specialized models. Specifically, Model-Agnostic Meta-
Learning [9] caught the interest of the FL community for
its compatibility with any ML model trained with gradi-
ent descent [14, 17, 8, 5]. On the other hand, in Federated
Multi-Task Learning (FMTL) [41, 7], each client is seen
as a different task. FMTL addresses underlying similari-
ties and structures common to some clients by learning a
separate model for each device of the network. In particu-
lar, [40] and [44] cluster clients according to their data dis-
tribution, assigning a specialized model to each cluster: [40]
uses the cosine similarity of the clients’ gradient update,
while [44] dynamically groups clients exploiting structural
similarities. Hsu et al. [12] develop FedIR and FedVC for
re-sampling and re-weighting the client pools.

As in the aforementioned algorithms, in this work, we
focus on addressing statistical heterogeneity in FL. Simi-
larly to [40, 44], we seek to learn specialized models ad-
dressing the different data distributions. However, differ-
ently from [40], our clusters are built and updated during
the federated communication rounds through a domain clas-
sifier, and not offline after the model convergence. This re-
moves the requirement that all client-specific models must
be stored server-side. Moreover, our method aims to iden-
tify and group distributions rather than the clients them-

selves, allowing us to model the realistic case where a
client’s data may belong to multiple distributions. In ad-
dition, while the applicability of [44] is constrained to the
clients seen during training, our domain model can be ap-
plied to unseen clients at test time thanks to the flexibility of
our domain classifier. Finally, we explore merging FL with
Graph Representation Learning to address statistical hetero-
geneity, using graphs to learn domain-specific parameters
and to model the interactions among them.
Graph Representation Learning Our work employs
Graph Convolutional Networks [18], using domain-specific
parameters as high-dimensional features at each node of the
graph. This is partly inspired from [28], where domain-
specific batch normalization [13] layers are connected
through a graph for addressing predictive domain adapta-
tion. However, here we focus on a completely different
problem (i.e. FL), requiring a different training paradigm,
and we build our graph on arbitrary layers of the network.

In the context of FL, to the best of our knowledge, the
only existing works adopting graphs as auxiliary represen-
tations are SGNN [31], ASFGNN [47] and GraphFL [43].
The first two employ graphs for a different purpose: they
use a similarity-based graph neural network for improving
node classification in network embeddings, while preserv-
ing user privacy. GraphFL, instead, is a semi-supervised
node classification method on graphs and uses the FL sce-
nario to solve real-world graph-based problems. Differently
from these works, we use the graph-based formulation not
to learn a single general model, but to capture the statistical
heterogeneity while taking into account the relations among
the different data distributions. Thanks to the graph, each
domain can be addressed with specific parameters while
still taking advantage of all local updates.

3. Cluster-driven Graph Federated Learning
In this section we present our approach addressing statis-

tical heterogeneity in FL by means of GCNs. Our method
is based on three ideas: i) identify the clusters of data
sharing the same distribution, ii) assign specific network
components to each cluster, and iii) let the components
interact within a GCN. We name our full model Cluster-
driven Graph Federated Learning (FedCG). Before describ-
ing FedCG, in the following we formalize the FL problem.
Problem Formulation. Our goal is to learn a function
fθ : X → Y , parametrized by θ, mapping samples from
an input space X to their corresponding semantic in an out-
put space Y . Specifically, we focus on a classification task,
where X contains images while Y is a probability simplex
defined over a set of labels Y .

In the FL setting, the server does not have direct access
to the data, but can communicate with a set C of clients,
where each client c ∈ C has access to a local dataset Tc =
{xi, yi}nc

i=1 with x ∈ X and y ∈ Y . In this scenario, we

can learn fθ by querying clients and relying on their local
updates of the parameters θ. In particular, since |C| is large,
we can assume a synchronous update scheme proceeding
in communication rounds, where in each round a set K of
clients receives fθ, with |K| � |C|. Each client k ∈ K
computes a local update of θ, i.e. θk, with its local dataset
Tk, by minimizing a given objective function. Since we
consider classification tasks, we update θk by minimizing
the standard cross-entropy loss over Tk:

θk = min
θ
− 1

nk

∑
(x,y)∈Tk

log fyθ (x) , (1)

where fyθ (x) denotes the probability of x to belong to class
y as given by fθ.

With Eq. (1), we obtain for each client k ∈ K its corre-
sponding local parameters θk tuned to address the classifi-
cation task of Tk. At each round, the server gathers all lo-
cal updates and combines them to update the central model
parameters θ. A simple yet effective strategy to aggregate
the local updates is FedAvg [30], that computes θ as the
weighted average of each θk:

θ =
1∑

k∈K nk

∑
k∈K

nkθk . (2)

Heterogeneity may be a problem in FedAvg, and in gen-
eral for FL strategies, due to the lack of convergence guar-
antees in non-i.i.d. and unbalanced data [41, 22]. In realistic
applications, the joint probability distributions over X and
Y are usually different in each client, i.e. given two clients
c and k with c 6= k, we have pXY (Tc) 6= pXY (Tk).

To address this problem, we propose an approach that
i) identifies the distributions (i.e. domains) present in dif-
ferent clients through clustering; ii) instantiates domain-
specific components to adapt the model to each domain; iii)
makes the various domain-specific modules interact through
a GCN, such that updating one of them can benefit the oth-
ers. In the following we describe each of these elements.

3.1. Federated Clustering

To address statistical heterogeneity through domain-
specific modules, we need to identify the different domains
present in the data. This is challenging since data are split
across multiple clients and the server cannot cluster them
directly. Moreover, these clusters, even if correctly identi-
fied for the training set, may not be optimal for the test set.
Here we address the first problem by a clustering procedure
built on two domain classifiers, one having the role of the
teacher and the other of the student, which iteratively group
images such that their grouping is easier to classify. We
describe how we match clusters to the test set in Sec. 3.3.

Formally, let us assume our data contain D domains,
with D being a hyperparameter. We initialize two domain

classifiers, the teacher gφ and the student gϕ parametrized
by φ and ϕ respectively. Each domain-classifier is a func-
tion, mapping images to a probability vectorD defined over
the D domains, i.e. g· : X → D. Given an input image,
the teacher provides domain pseudo-labels as a target to re-
fine student’s predictions. In particular, we learn the client
student parameters ϕk by iteratively minimizing the cross-
entropy loss between the teacher and student domain pre-
dictions over Tk. Thus, for a client k ∈ K, the parameters
ϕk of the student are:

ϕk = argmin
ϕ
− 1

nk

∑
(x,y)∈Tk

log gd̂ϕ(x) , (3)

where d̂ is the pseudo-label given by the teacher for x, i.e.
d̂ = argmaxd∈D g

d
φ(x) and gd∗(x) denotes the probability

of x to belong to the d-th domain as given by g∗. Eq. (3)
rewards the student from being able to classify according to
the pseudo labels, and implicitly encourages agreement on
the pseudo-labels, thus on the clustering, which most easily
may be agreed upon. Then the domain classifier parameters
ϕ are updated after each round with standard FedAvg, i.e.
ϕ = 1∑K

i=1 nk

∑
k∈K nkϕk.

The idea behind this approach is inspired from deep clus-
tering with self-labelling [45], i.e. the teacher and the stu-
dent networks would find the equilibrium once they group
images in such a way so they can be more easily recog-
nized. This reconnects to the DNNs being natural deep im-
age priors[42], working well for image-related tasks even if
just randomly initialized. And it may intuitively match that
a “bad” labelling would leave no alternative to a DNN but
to overfit [46], which may be hard to imitate by the student.
Differently from [45], since we have no access to data and
cluster labels, we use the teacher gφ to provide them locally
in each client. Both φ and ϕ are randomly initialized and
φ is fixed during training. After T rounds, with T being a
hyperparameter, the parameters φ of the teacher are updated
with the current student ones ϕ, iteratively.

Note that, unlike previous works [44], our clustering
algorithm can assign unseen data to clusters at test time,
thanks to the domain classifier. In particular, the cluster as-
signment of a test image x corresponds to the domain prob-
abilities given by the student gϕ. Since gϕ(x) is soft, we
can accommodate for data belonging to unseen domains by
a combination of existing ones. Additionally, in our for-
mulation, one client’s data samples may belong to multi-
ple clusters, considering the more general case where each
client may contain more than one data distribution.

3.2. Cluster-specific Models

Since our model can identify data clusters through the
previously described procedure, we can design a way to
specialize the function fθ to each domain. Inspired by

multi-domain learning [36, 39, 37, 27, 29], we can achieve
this with domain-specific components. For simplicity, let
us consider the parameters θ to be split into two sets, i.e.
θ = {θa, θs} where θa are the domain-agnostic parameters
and θs the domain-specific ones. Note that θs is actually a
set θs = {θds}Dd=1 where θds are the parameters specific to
the d-th domain. To tailor the model to a specific domain,
we can consider multiple ways to include θs, such as di-
rect influence on the agnostic parameters θa [39, 27, 29] or
residual activations [36, 37]. Here we follow the latter strat-
egy, since the former relies on the robustness of θa, which
is harder to guarantee in FL. Let us assume fθ to be a deep
neural network with a set of layers L, denoting as f `θ the
function applied at layer ` ∈ L. Given input from a do-
main and the features z` extracted at the previous layer, the
output of the `-th layer is:

z` = f `θa(z) + λl

D∑
d=1

wd · f `θds (z) , (4)

where λl is a learnable parameter balancing the effect of
the domain-specific components and wd is the weight of
domain d. During training, we assume data to belong to
a single cluster, given by the pseudo-labels of the teacher,
thus wd is 1 if d = d̂ and 0 otherwise. At test time, we
want our model to deal with data from arbitrary domains
by simply combining residuals of seen ones. Thus we set
wd = gdϕ(x), weighting the impact of each domain-specific
component by the student output probabilities. Note that the
formulation in Eq. (4) is general, with f `θ being any layer of
a standard convolutional neural network. We explored its
application to either the whole network or the last layers.

Since we are in a federated scenario, also the central
domain-specific parameters must be updated without access
to local data and after each round. In practice, we follow
Eq. (2) and we perform FedAvg on both domain-agnostic
and domain-specific parameters in each training round.

3.3. Connecting Cluster-specific Models

We now have a model that can adapt to the specificity
of each domain. Here we propose to refine the domain-
specific parameters by making them interact. Specifically,
we model the interaction of the domain-specific parameters
of each layer ` via a graph G` = (V`, E`), where the nodes
i ∈ V` are the set of all domain-specific parameters at layer
`, and eij ∈ E` are the edges connecting two domain nodes i
and j which may interact together. This addresses the draw-
back of our formulation in Sec. 3.2, i.e. if a domain has few
assigned samples, its parameters will be rarely updated and
thus not robust enough to capture the specificity of the do-
main and generalize to unseen samples of the same domain.

We propose to use a GCN [18] to model the interaction of
domain-specific parameters. Let us collect in the matrix V`

Server

Client
ClassificationDomain clustering

Domain-specific parameters
Knowledge
distillation

Teacher

Student

...

Figure 2. FedCG framework (best seen in colors). The server sends the model fθ to the clients selected for the federated round, together
with the teacher gφ and student gϕ domain classifiers. On the client-side, the domain classifier clusters the local data x, producing as
output the domain of belonging d̂ of each image. At training time, the hard label d̂ is predicted by gφ and is used as input to train gϕ
through a process based on knowledge distillation. At test time, d̂ is given by gϕ and is a weighted combination of the discovered domains.
In FedCG, the network fθ is made of a domain-agnostic part (in gray) and a residual domain-specific one (in blue). The domain-specific
parameters are produced by the GCN, receiving as input A,W`,V` and d̂. After training both fθ and gϕ on its data, the client k sends back
to the server the updated weights θk and ϕk. On the server-side, the updates are aggregated by the means of the FedAvg algorithm.

the value of each node, i.e. all domain-specific parameters at
layer `: V` = [θ1s|l, . . . , θ

D
s|l]

ᵀ ∈ IRD×q , with q = |θds|l| the
number of parameters per domain. We compute the graph-
version V̂` of the domain-specific parameters V` as:

V̂` = σ(A V` W`) , (5)

where σ is an activation function (e.g. ReLU), A ∈ IRD×D

is the adjacency matrix defined across the domains, and
W` ∈ IRq×q

′
is a weight projection matrix, projecting

the domain-specific parameters into dimension q′. Here,
for simplicity, we set q = q′. In FedCG, we replace the
domain-specific parameters of Eq. (4) with the ones com-
puted in Eq. (5). Similarly to all other parameters of the
network, we update W in each training round through Fe-
dAvg. In case q is large, we implement W as a multi-layer
bottleneck (see implementation details).

The values in the adjacency matrix encode, for each
edge, how close two domains are; since we have no pri-
ors on the structure of the graph, we model G` as a fully-
connected weighted graph. Without direct access to the data
server-side, we compute the distance among two domains
directly in the (domain-specific) parameter’s space. In prac-
tice, we define the similarity hi,j among domains i, j as:

hi,j =
1

‖θis − θ
j
s‖2

, (6)

and the corresponding value Aij in the adjacency matrix as:

Aij =

{
β if i = j

(1−β)·hij∑D
d=1 1i6=dhid

otherwise

where β is a hyperparameter weighing the impact of the
self-connection, which we set to 0.5, and 1i6=m is an indi-
cator function being 1 when i 6= m and 0 otherwise.

In our formulation, each client receives not only the set
of parameters θ, but also the adjacency matrix. With this
definition, we are forcing the gradient of a domain-specific
component to flow to all others through the GCN. Conse-
quently, an update on a domain-specific component will in-
fluence all domain-specific parameters, even the ones of the
domains not present in the current training round. More-
over, given two domains i, j with i 6= j, the influence of
j on i in each layer is directly proportional to the adja-
cency matrix value Aij . This means that the more two sets
of domain-specific parameters are close, the higher is their
mutual influence. Finally, while the GCN is a way to en-
sure information flow across domains during training, at in-
ference we can just precompute V̂` for each layer, to save
memory usage.

4. Experiments

4.1. Datasets and implementation details

We evaluate the proposed model on image classifica-
tion tasks on the LEAF benchmark [2], testing both on
the CelebA [25] and Federated Extended MNIST (FEM-
NIST) [20, 6] datasets. Table 1 details each setting.

CelebA is a widely used dataset containing pictures of
faces of several celebrities. We follow the same experimen-
tal protocol of [2], partitioning the dataset by celebrities
and ignoring the ones with less than 5 images. The task is

binary classification, recognizing whether the depicted per-
son is smiling or not. Following [2], we use 10% of the total
clients for training and a separate split of 20% of them for
test. We train FedAvg and our model on 100 rounds with
10 clients each, training locally for a single epoch with a
batch size of 5 and a learning rate of 10−3. To perform a
fair comparison we used the same architecture of [2], re-
placing convolutional and batch-normalization layers with
their FedCG counterpart, based on a 1-layer GCN.

FEMNIST contains images depicting different characters
drawn by different writers. The task is a 62-way classifica-
tion problem, where the classes correspond to the uppercase
and lowercase letters of the alphabet and numbers. Fol-
lowing the setting proposed by [2], each client corresponds
to a different writer, using 60% of them for training, 20%
for validation and 20% for test. We run both FedAvg and
FedCG for 1000 rounds of 5 clients each, using a batch size
of 10, a learning rate of 10−3 and one local epoch. We use
the same and architecture of [2], replacing the last convolu-
tional layer with our GCN-based version. In this case, we
use a 2-layers GCN, modeling the projection matrix W as
a bottleneck dividing the features by a factor of 16.

Implementation details In all datasets, the domain clas-
sifiers are CNNs made of two convolutional layers of 32
and 64 features and kernel size 3× 3, followed by an aver-
age pooling and a linear layer whose output dimension is the
number of domains. We train the domain classifiers through
an SGD optimizer without weight decay and a learning rate
of 10−4. We implement FedCG on PyTorch [35], running
the experiments on NVIDIA GeForce 1070 GTX GPUs. We
chose PytTorch due to its higher flexibility for prototyping
and experimenting the components of our model. To en-
sure a fair comparison, we implemented the FedAvg base-
line using the same framework, architectures, hyperparam-
eters and training protocols of [3].Table 2 compares our re-
sults with the performance of the Tensorflow [1] implemen-
tation from the LEAF repository [3]: our FedAvg baseline
outperforms the original one by almost 3% in accuracy on
FEMNIST, while performing almost 2.5% less on CelebA.
Nevertheless, our main interest is to evaluate the relative im-
provement of the proposed model with respect to a baseline
that does not exploit domain information, using the same
aggregation strategy of FedAvg for federated learning. For
these reasons, in the following we will take as reference
the FedAvg results of the PyTorch framework, to ensure a
comparison with the baseline under the exact conditions.
We evaluate our results in terms of global accuracy on the
test set, i.e. on the union of the images of all test devices.
All experiments on the same dataset were run with the same
configuration to perform a fair comparison between the con-
sidered approaches.

Dataset Clients Total samples Samples per client Classes
Mean Stdev

CelebA 9,343 200,288 21.44 7.63 2
FEMNIST 3,550 805,263 226.83 88.94 62

Table 1. Datasets Statistics

Dataset TensorFlow PyTorch
CelebA 89.46 86.88

FEMNIST 74.72 77.81
Table 2. Accuracy of FedAvg in TensorFlow [2] and our version
implemented in PyTorch.

4.2. Ablation study

In this section, we focus our analysis on testing the per-
formance of the proposed model on the CelebA dataset, ana-
lyzing the various components of our approach. All referred
studies and results can be found in Table 3 and 4.

4.2.1 How to use domain information
To create a sanity-check for our model, we first define the
domains manually, exploiting the a priori knowledge given
from the images meta-data, i.e. the 40 attributes of the
dataset (Table 3). This allows us to isolate the choice of how
to include domain-specific information within the model,
without any influence from the clustering procedure. From
the 40 attributes, we select the combination of n attributes
leading to the most balanced subdivisions of the dataset and
having a low correlation with the target feature. Since each
attribute can only assume the values {0, 1}, the number of
possible domains is given by all the 2n combinations of the
n features. We choose n = 5, havingN = 32 domains. The
selected features are attractive, heavy makeup, high cheek-
bones, mouth slightly open and wavy hair.
Domain-specific models We start by replacing the stan-
dard single server model with N separate domain-specific
models, trained and tested only on the images of their spe-
cific domains. As shown in Table 3, the performance drops
significantly (33.61% vs 86.88% of FedAvg), since the in-
sufficient amount of data seen by each model leads to poor
generalization. This shows that learning a single full model
per each domain is not a viable strategy in this scenario.
Modeling the relations across domains In order to ac-
count for the relations existing among the different do-
mains, we introduce the graph, modeled as a 1-layer GCN.
To study the impact of introducing a GCN, we also test
a simpler version of the model without the weight trans-
formation matrix W . We analyze different choices of A,
considering the cases where i) they are uniformly weighted
(U) and ii) the domains are weighted according to a similar-
ity criterion (H), specifically the normalized inverse of the
Hamming distance [34] between the numerical representa-
tion of the domains (i.e. their binary metadata). As Table 3
shows, using a GCN consistently improves the final perfor-
mance over the domain-specific models. The uniform adja-

cency matrix performs slightly better than the weighted one
in this case, with both their performance improving when
the projection matrix W is introduced. These results con-
firm the importance of making the domain-specific nodes
interact. However, the results are not satisfactory, being ei-
ther below or just 1% above (GCN-H with W) FedAvg.
This means that domain information is still dully exploited
within the model.
Residual domain-specific layers. Finally, we analyze the
usage of domain-specific parameters to produce residual ac-
tivations (i.e. Eq. (4)), as in FedCG, comparing it with the
GCN when not using any domain-agnostic component. As
Table 3 shows, while the model with uniform adjacency
matrix (U) sees a decrease in performance from GCN to
FedCG (i.e. 87.92% vs 86.96%), the model with weighted
adjacency matrix (H) sees a large boost, going from the
84.25% accuracy of GCN to the 88.65% of FedCG. We
can draw two conclusions. First, using residual layers to
refine the domain agnostic activations (FedCG) performs
better than using only domain-specific components (GCN).
Second, when domain-specific components are integrated
as residuals, they are much more effective when connected
in a weighted (H) rather than a uniform (U) fashion. This
is proved by the results of FedCG-H, surpassing FedCG-
U by 1.7% in accuracy. Finally, we test the importance of
the ReLU non-linearity applied to the output of the residual
GCN. The non-linearity improves FedCG, both when the
domains are connected uniformly (+1%) and in a weighted
fashion (+0.9%). The final FedCG model with 1-layer GCN
filtered with a ReLU and a weighted adjacency matrix out-
performs the baseline FedAvg by 2.6% accuracy, showing
the effectiveness of our choices.

4.2.2 How to identify the domains
In the previous section, we analyzed how to integrate
domain-specific components given oracle domain informa-
tion. In this section, we drop the assumption of having
such information and we study the effectiveness of the
domains discovered through our clustering procedure on
FedCG held out through the teacher-student domain clas-
sifier (cf. Sec. 3.1). We report the results of our analysis in
Table 4.
Domains extracted through clustering We start by
comparing our domain classifier with the K-means algo-
rithm [26] applied to the parameters of the models trained
separately on each client. FedCG performs clustering lo-
cally instead, accessing only a subset of the clients at each
round. As Table 4 shows, the performance of our clustering
procedure is either on par (D = 2) or superior (D = 3,4)
to K-means clustering. In particular, as the number of clus-
ters grows, the performance of K-means drops (i.e. from
88.36% with D = 2 to 87.21 with D = 4), while our
method - with the same residual GCN - shows performance
improvements (i.e. from 88.03% with D = 2 to 88.74 with

D = 4). This indicates the effectiveness of our local clus-
tering procedure that, differently from K-means, captures
the presence of different domains within each client, with-
out requiring one specific model per client.

Then, we analyze the effect of different initialization
strategies for the adjacency matrix of the GCN, consider-
ing two choices, i.e. domains either disconnected (identity
matrix, eye) or randomly connected (random adjacency ma-
trix, rand). From Table 4, it is easy to see our method per-
formances are not dependent on the particular initialization
strategy, achieving over 88.5% for all choices with D = 4.
With random initialization though, the performance does
not grow with the number of domains, which may indicate
the importance of carefully initializing A as the number of
domains grows. For this reason, in the following we always
consider a uniform initialization strategy. Note that such
a strategy allows the model to refine the domain-specific
components separately before merging them based on their
distance (see Eq. (3.3)).

As a third analysis, we focus on the impact of perform-
ing a soft combination of domains at test time (as described
in Section 3.2) rather than using a hard-assignment derived
from the predictions of the domain classifier. In both cases,
performances are close for all D, showing the domain clas-
sifier provides reliable domain predictions at test time. In
the following, we always consider the soft-assignment due
to its higher flexibility.

Finally, we test the application of the domain-specific
modules only on the last layer of the network (rather than
on all layers) to see whether a good performance can be
achieved while reducing the number of parameters required
by FedCG. As the experiments show, using domain-specific
parameters on the last layer provides the best results over-
all (89.18% with D = 4), improving the best combination
by 0.44%. Since this choice allows FedCG to use less pa-
rameters while still achieving good results, we limit the use
of domain-specific parameters to the last layers in the next
section.

4.3. Comparison with the state of the art

Here we compare our FedCG with state-of-the-art results
on both CelebA and FEMNIST. Unfortunately, since dif-
ferent methods employ different settings and client splits,
it is difficult to provide an extensive comparison on these
datasets. For this reason, on CelebA we compare our model
directly with the FedAvg baseline, while for FEMNIST we
compare it with FedAvg, FedProx [23] and SCAFFOLD
[16]. FedProx [23] adds a proximal term to the standard
FedAvg algorithm for improving the model stability when
applied over heterogeneous systems and data. SCAFFOLD
[16] uses variance reduction for minimizing the impact of
the drift in the updates of each client. We report the results
of FedProx and SCAFFOLD shown in their original papers,

Model A W ReLU Acc(%)
Domain-specific models - - - 33.61

GCN

U 7 7 84.39
H 7 7 82.10
U 3 7 87.92
H 3 7 84.25

FedCG

U 3 7 86.96
H 3 7 88.65
U 3 3 87.97
H 3 3 89.57

Table 3. Ablation studies on CelebA dataset with N = 32 do-
mains extracted from images meta-data. A is the adjacency ma-
trix that weights the domains contributions: the symbols (eye,U,H)
respectively stand for identity, uniform and weighted (with inverse
Hamming distance) matrices. W is the weight projection matrix
and ReLU the chosen non-linear activation.

FedCG layers A init Clusters D Soft domains Acc(%)

all

eye K-means 2 7 88.36
eye K-means 3 7 87.97
eye K-means 4 7 87.21
eye Clf 2 7 88.03
eye Clf 3 7 88.59
eye Clf 4 7 88.74
rand Clf 2 7 88.73
rand Clf 3 7 88.24
rand Clf 4 7 88.55
eye Clf 2 3 87.88
eye Clf 3 3 88.74
eye Clf 4 3 88.67

last

eye Clf 2 3 88.31
eye Clf 3 3 88.13
eye Clf 4 3 89.18
eye Clf 32 3 88.40

Table 4. Ablation studies on CelebA dataset with domains
given by a priori knowledge or online clustering procedures.
In the A init column, “eye” stands for identity matrix and “rand”
for random. The third column specifies the clustering, i.e. clusters
generated with K-means or the teacher-student classifier (“Clf”).

while for FedAvg we use our baseline. For our method,
we use the domain-specific parameters applied on the last
layer, D = 4, soft domain assignments at test time and the
adjacency matrix initialized as identity.

The experimental comparison is reported in Table 5.
FedCG largely outperforms FedAvg in both scenarios. It
achieves 89.18% accuracy compared to 86.88% of FedAvg
on CelebA, and 83.41% accuracy compared to 77.81% of
FedAvg on FEMNIST. This latter improvement (+5.6%) is
remarkable given the higher complexity of the classifica-
tion task in FEMNIST. Comparing FedCG with FedProx
and SCAFFOLD on FEMNIST, we can see that FedCG out-
performs FedProx by a large margin (+8.41%) while be-
ing slightly inferior to SCAFFOLD (i.e.-0.79%). However,
both FedProx and SCAFFOLD present results under differ-
ent federated protocols, e.g. FedProx runs the algorithm for

Dataset Model Accuracy (%)

CelebA FedAvg 86.88
FedCG 89.18

FEMNIST

FedAvg 77.81
FedCG 83.41
FedProx 75.00
SCAFFOLD 84.20

Table 5. Comparison with the state of the art on CelebA and
FEMNIST. We separate the methods according to their setting.

200 rounds of 10 clients while SCAFFOLD performs 1000
rounds with 20 clients each. Despite that, our comparisons
demonstrate that FedCG is far superior to the standard Fe-
dAvg baselines, due to its better ability to address the statis-
tical heterogeneity across clients, while showing either su-
perior (w.r.t. FedProx) or competitive (w.r.t. SCAFFOLD)
results with other state-of-the-art algorithms trained on dif-
ferent settings.

As a final analysis, we verify the role of the domain-
specific components by checking the final values of the
λ scalar of Eq. (4), which weighs the importance of the
domain-specific residual. Interestingly, in CelebA, where
the concept of heterogeneity is less marked, the λ value
in the last convolutional layer is 0.3. The final value for
FEMNIST, instead, where the heterogeneity across clients
is clearer due to the different writing styles, is 2.1. That
shows FedCG tailors the use of the domain-specific resid-
ual to the specific characteristics of the target dataset and the
consequent heterogeneity across the discovered domains.

5. Conclusions
In this work, we introduced FedCG, the first cluster-

driven approach addressing statistical heterogeneity in fed-
erated learning with Graph Convolutional Neural Networks.
FedCG uses an iterative clustering algorithm based on
teacher and student domain classifiers. This clustering pro-
cedure serves to discover different input distributions, i.e.
domains, and to instantiate domain-specific parameters ac-
cordingly. The domain-specific parameters are connected
through a GCN that enables them to interact and share
knowledge during training. These parameters influence the
activation of the main, domain-agnostic, network thanks to
weighted residual activations. Thanks to the domain clas-
sifiers and connections of the GCN, new input distributions
and unseen users can be addressed at test time via their do-
main soft-assignment scores. Experimental results show
that FedCG outperforms the FedAvg on multiple bench-
marks, demonstrating the efficacy of each component.

Acknowledgments This work has been partially funded by the
ERC 853489 - DEXIM, the ERC 802554 - SPECGEO, the ERC
637076 RoboExNovo, the DFG – EXC number 2064/1 – Project
number 390727645, and the MIUR under grant “Dipartimenti di
eccellenza 2018-2022”.

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation
({OSDI} 16), pages 265–283, 2016.

[2] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar.
Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

[3] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Tal-
walkar. Leaf: A benchmark for federated settings.
https://github.com/TalwalkarLab/leaf, 2018.

[4] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997.

[5] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and
Xiuqiang He. Federated meta-learning with fast con-
vergence and efficient communication. arXiv preprint
arXiv:1802.07876, 2018.

[6] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre
Van Schaik. Emnist: Extending mnist to handwritten letters.
In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926. IEEE, 2017.

[7] Luca Corinzia and Joachim M Buhmann. Variational feder-
ated multi-task learning. arXiv preprint arXiv:1906.06268,
2019.

[8] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Per-
sonalized federated learning with theoretical guarantees: A
model-agnostic meta-learning approach. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, vol-
ume 33, pages 3557–3568. Curran Associates, Inc., 2020.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
arXiv preprint arXiv:1703.03400, 2017.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling
the knowledge in a neural network. In NIPS Deep Learning
and Representation Learning Workshop, 2015.

[11] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Mea-
suring the effects of non-identical data distribution for feder-
ated visual classification, 2019.

[12] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Fed-
erated visual classification with real-world data distribution.
In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, editors, Computer Vision – ECCV 2020,
pages 76–92, Cham, 2020. Springer International Publish-
ing.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015.

[14] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kan-
nan. Improving federated learning personalization via model
agnostic meta learning. arXiv preprint arXiv:1909.12488,
2019.

[15] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. arXiv preprint arXiv:1912.04977, 2019.

[16] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for fed-
erated learning. In International Conference on Machine
Learning, pages 5132–5143. PMLR, 2020.

[17] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Tal-
walkar. Adaptive gradient-based meta-learning methods. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[18] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations, 2016.

[19] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon. Fed-
erated learning: Strategies for improving communication ef-
ficiency. arXiv preprint arXiv:1610.05492, 2016.

[20] Yann LeCun and Corinna Cortes. MNIST handwritten digit
database. 2010.

[21] Daliang Li and Junpu Wang. Fedmd: Heterogenous feder-
ated learning via model distillation. In Workshop on Feder-
ated Learning for Data Privacy and Confidentiality, 2019.

[22] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia
Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37(3):50–60,
2020.

[23] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated op-
timization in heterogeneous networks. In I. Dhillon, D. Pa-
pailiopoulos, and V. Sze, editors, Proceedings of Machine
Learning and Systems, volume 2, pages 429–450, 2020.

[24] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smithy. Feddane: A federated newton-type method. In
2019 53rd Asilomar Conference on Signals, Systems, and
Computers, pages 1227–1231, 2019.

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), De-
cember 2015.

[26] James MacQueen et al. Some methods for classification
and analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA,
1967.

[27] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 67–82, 2018.

[28] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo,
and Elisa Ricci. Adagraph: Unifying predictive and continu-
ous domain adaptation through graphs. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6568–6577, 2019.

[29] Massimiliano Mancini, Elisa Ricci, Barbara Caputo, and
Samuel Rota Bulo. Boosting binary masks for multi-domain
learning through affine transformations. Machine Vision and
Applications, 31(6):1–14, 2020.

[30] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Proc. 20th Int. Conf. Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[31] Guangxu Mei, Ziyu Guo, Shijun Liu, and Li Pan. Sgnn: A
graph neural network based federated learning approach by
hiding structure. In 2019 IEEE International Conference on
Big Data (Big Data), pages 2560–2568. IEEE, 2019.

[32] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh.
Agnostic federated learning. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 4615–
4625. PMLR, 09–15 Jun 2019.

[33] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[34] Mohammad Norouzi, David J Fleet, and Russ R Salakhutdi-
nov. Hamming distance metric learning. In Advances in neu-
ral information processing systems, pages 1061–1069, 2012.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[36] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. In
Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 506–516, 2017.

[37] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Efficient parametrization of multi-domain deep neural net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8119–8127, 2018.

[38] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Has-
sani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq: A
communication-efficient federated learning method with pe-
riodic averaging and quantization. In International Confer-
ence on Artificial Intelligence and Statistics, pages 2021–
2031. PMLR, 2020.

[39] Amir Rosenfeld and John K Tsotsos. Incremental learning
through deep adaptation. IEEE transactions on pattern anal-
ysis and machine intelligence, 42(3):651–663, 2018.

[40] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek.
Clustered federated learning: Model-agnostic distributed

multitask optimization under privacy constraints. IEEE
Transactions on Neural Networks and Learning Systems,
2020.

[41] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and
Ameet S Talwalkar. Federated multi-task learning. In Ad-
vances in Neural Information Processing Systems, pages
4424–4434, 2017.

[42] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In CVPR, 2018.

[43] Binghui Wang, Ang Li, Hai Li, and Yiran Chen. Graphfl: A
federated learning framework for semi-supervised node clas-
sification on graphs, 2020.

[44] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi
Wang, and Jing Jiang. Multi-center federated learning. arXiv
preprint arXiv:2005.01026, 2020.

[45] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via
simultaneous clustering and representation learning. In In-
ternational Conference on Learning Representations, 2020.

[46] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning re-
quires rethinking generalization. In ICLR, 2017.

[47] Longfei Zheng, Jun Zhou, Chaochao Chen, Bingzhe Wu, Li
Wang, and Benyu Zhang. Asfgnn: Automated separated-
federated graph neural network. Peer-to-Peer Networking
and Applications, pages 1–13, 2021.

