Covalent adaptable networks (CANs) are a new class of polymers possessing the structural robustness of classical thermosets and stimuli-dependent malleability of thermoplastics, imparting them with repairability, reprocessability, and recyclability potential. These CANs can even be tailored to have spatially controllable properties and enhanced functionality; however, the introduction of additional reactive moieties leads to inadvertent side reactions and deterioration of the desired performance. Herein, we present a comprehensive approach to the optimization of locally controllable CANs, relying on base catalyzed thiol-thioester exchange reactions. The network is formed by visible light (405/450 nm) induced radical thiol-ene polymerization, whilst local deactivation of the dynamic exchange reaction is achieved by neutralizing the basic catalyst with a photoacid generated upon UV-light (365 nm) exposure. The intricate interactions between the resin components were studied, and the factors affecting the network performance were investigated to provide a detailed account of the development process, from the rational selection of initial components to the systematic optimization of a locally controlled, photoswitchable CAN. Finally, its on-demand tunability is demonstrated by surface- and bulk shape reconfiguration through heat-assisted processes.

Building From the Ground Up: A Procedural Guide to Locally Controlling Bond Exchange Kinetics in Dynamic Thiol‐Thioester Networks / Korotkov, Roman; Tumaneng, John Vincent; Bongiovanni, Roberta; Dalle Vacche, Sara; Rossegger, Elisabeth; Schlögl, Sandra. - In: MACROMOLECULAR RAPID COMMUNICATIONS. - ISSN 1022-1336. - ELETTRONICO. - 46:22(2025). [10.1002/marc.202500654]

Building From the Ground Up: A Procedural Guide to Locally Controlling Bond Exchange Kinetics in Dynamic Thiol‐Thioester Networks

Tumaneng, John Vincent;Bongiovanni, Roberta;Dalle Vacche, Sara;
2025

Abstract

Covalent adaptable networks (CANs) are a new class of polymers possessing the structural robustness of classical thermosets and stimuli-dependent malleability of thermoplastics, imparting them with repairability, reprocessability, and recyclability potential. These CANs can even be tailored to have spatially controllable properties and enhanced functionality; however, the introduction of additional reactive moieties leads to inadvertent side reactions and deterioration of the desired performance. Herein, we present a comprehensive approach to the optimization of locally controllable CANs, relying on base catalyzed thiol-thioester exchange reactions. The network is formed by visible light (405/450 nm) induced radical thiol-ene polymerization, whilst local deactivation of the dynamic exchange reaction is achieved by neutralizing the basic catalyst with a photoacid generated upon UV-light (365 nm) exposure. The intricate interactions between the resin components were studied, and the factors affecting the network performance were investigated to provide a detailed account of the development process, from the rational selection of initial components to the systematic optimization of a locally controlled, photoswitchable CAN. Finally, its on-demand tunability is demonstrated by surface- and bulk shape reconfiguration through heat-assisted processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3006455
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo