The work focuses on direct data-driven controller design using input-output measurements corrupted by bounded additive noise. The main goal is to tackle the data-driven model reference control problem. To this end, we employ a set-membership framework and define the feasible controller parameter set, i.e., the set of parameters consistent with the noise bounds and the model-matching condition. We determine the controller parameters as the Chebyshev center of this set. We also provide a data-driven condition that is sufficient for establishing stability. This condition is also robust against the presence of bounded noise. The approach utilizes polynomial optimization and achieves global optimality via semidefinite relaxation techniques. A simulation example demonstrates the effectiveness of the proposed approach.

Direct data-driven controller design from bounded errors-in-variables measurements / Cerone, V.; Fosson, S.; Pirrera, S.; Regruto, D.. - (2025), pp. 2297-2302. ( 2023 European Control Conference (ECC) Thessaloniki (GRC) 24-27 June 2025) [10.23919/ecc65951.2025.11187201].

Direct data-driven controller design from bounded errors-in-variables measurements

Cerone, V.;Fosson, S.;Pirrera, S.;Regruto, D.
2025

Abstract

The work focuses on direct data-driven controller design using input-output measurements corrupted by bounded additive noise. The main goal is to tackle the data-driven model reference control problem. To this end, we employ a set-membership framework and define the feasible controller parameter set, i.e., the set of parameters consistent with the noise bounds and the model-matching condition. We determine the controller parameters as the Chebyshev center of this set. We also provide a data-driven condition that is sufficient for establishing stability. This condition is also robust against the presence of bounded noise. The approach utilizes polynomial optimization and achieves global optimality via semidefinite relaxation techniques. A simulation example demonstrates the effectiveness of the proposed approach.
2025
978-3-907144-12-1
File in questo prodotto:
File Dimensione Formato  
Direct_data-driven_controller_design_from_bounded_errors-in-variables_measurements.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 335.29 kB
Formato Adobe PDF
335.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ECC_EIV_DDDC_final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 293.56 kB
Formato Adobe PDF
293.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3005456