We design a computational approach to find equilibria in a class of Nash games possessing a hierarchical structure. By using tools from mixed-integer optimization and the characterization of variational equilibria in terms of the Karush-Kuhn-Tucker conditions, we propose a mixed-integer game formulation for solving this challenging class of problems. Besides providing an equivalent reformulation, we design a proximal Gauss-Seidel method with global convergence guarantees in case the game enjoys a potential structure. We finally corroborate the numerical performance of the algorithm on a novel instance of the ride-hail market problem.
A Gauss-Seidel method for solving multi-leader-multi-follower games / Franci, Barbara; Fabiani, Filippo; Schmidt, Martin; Staudigl, Mathias. - (2025), pp. 2775-2780. (Intervento presentato al convegno 23rd European Control Conference (ECC) tenutosi a Thessaloniki (Greece) nel 24-27 June 2025) [10.23919/ecc65951.2025.11187084].
A Gauss-Seidel method for solving multi-leader-multi-follower games
Franci, Barbara;
2025
Abstract
We design a computational approach to find equilibria in a class of Nash games possessing a hierarchical structure. By using tools from mixed-integer optimization and the characterization of variational equilibria in terms of the Karush-Kuhn-Tucker conditions, we propose a mixed-integer game formulation for solving this challenging class of problems. Besides providing an equivalent reformulation, we design a proximal Gauss-Seidel method with global convergence guarantees in case the game enjoys a potential structure. We finally corroborate the numerical performance of the algorithm on a novel instance of the ride-hail market problem.| File | Dimensione | Formato | |
|---|---|---|---|
|
A_GaussSeidel_method_for_solving_multi-leader-multi-follower_games.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
412.64 kB
Formato
Adobe PDF
|
412.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2404.02605v2.pdf
accesso riservato
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
434.36 kB
Formato
Adobe PDF
|
434.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3004265
