The rapid advancement of artificial intelligence in automotive applications, particularly in Advanced Driver-Assistance Systems (ADAS) and smart battery management on electric vehicles, increases the demand for efficient near-sensor processing. While the problem of linear algebra in machine learning is well-addressed by existing accelerators, the computation of nonlinear activation functions is usually delegated to the host CPU, resulting in energy inefficiency and high computational costs. This paper introduces TOXOS, a RISC-V-compliant coprocessor designed to address this challenge. TOXOS implements the COordinate Rotation DIgital Computer (CORDIC) algorithm to efficiently compute nonlinear functions. Taking advantage of RISC-V modularity and extendability, TOXOS seamlessly integrates with existing computing architectures. The coprocessor's configurability enables fine-tuning of the area-performance tradeoff by adjusting the internal parallelism, the CORDIC iteration count, and the overall latency. Our implementation on a 65nm technology demonstrates a significant improvement over CPU-based solutions, showcasing a considerable speedup compared to the glibc implementation of nonlinear functions. To validate TOXOS's real-world impact, we integrated TOXOS in an actual RISC-V microcontroller targeting the on-vehicle execution of machine learning models. This work addresses a critical gap in transcendental function computation for AI, enabling real-time decision-making for autonomous driving systems, maintaining the power efficiency crucial for electric vehicles.

TOXOS: Spinning Up Nonlinearity in On-Vehicle Inference with a RISC-V CORDIC Coprocessor / Giuffrida, Luigi; Masera, Guido; Martina, Maurizio. - In: TECHNOLOGIES. - ISSN 2227-7080. - (2025).

TOXOS: Spinning Up Nonlinearity in On-Vehicle Inference with a RISC-V CORDIC Coprocessor

Luigi, Giuffrida;Guido, Masera;Maurizio, Martina
2025

Abstract

The rapid advancement of artificial intelligence in automotive applications, particularly in Advanced Driver-Assistance Systems (ADAS) and smart battery management on electric vehicles, increases the demand for efficient near-sensor processing. While the problem of linear algebra in machine learning is well-addressed by existing accelerators, the computation of nonlinear activation functions is usually delegated to the host CPU, resulting in energy inefficiency and high computational costs. This paper introduces TOXOS, a RISC-V-compliant coprocessor designed to address this challenge. TOXOS implements the COordinate Rotation DIgital Computer (CORDIC) algorithm to efficiently compute nonlinear functions. Taking advantage of RISC-V modularity and extendability, TOXOS seamlessly integrates with existing computing architectures. The coprocessor's configurability enables fine-tuning of the area-performance tradeoff by adjusting the internal parallelism, the CORDIC iteration count, and the overall latency. Our implementation on a 65nm technology demonstrates a significant improvement over CPU-based solutions, showcasing a considerable speedup compared to the glibc implementation of nonlinear functions. To validate TOXOS's real-world impact, we integrated TOXOS in an actual RISC-V microcontroller targeting the on-vehicle execution of machine learning models. This work addresses a critical gap in transcendental function computation for AI, enabling real-time decision-making for autonomous driving systems, maintaining the power efficiency crucial for electric vehicles.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3004259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo