Food safety is a critical concern: hazardous incident reports need to be classified to be able to take appropriate measures in a timely manner. The SemEval-2025 Task 9 on Food Hazard Detection aims to classify food-related incident reports by identifying both the type of hazard and the product involved, at both coarse and fine levels of granularity. In this paper, we present our solution that approaches the problem by leveraging two independent encoderonly transformer models, each fine-tuned separately to classify hazards and food products, at the two levels of granularity of interest. Experimental results show that our approach effectively addresses the classification task, achieving high-quality performance on both subtasks. We additionally include a discussion on potential improvements for future iterations, and a brief description of failed attempts. We make the code available at https://github.com/fgiobergia/SemEval2025-Task9.

MINDS at SemEval-2025 Task 9: Multi-Task Transformers for Food Hazard Coarse-Fine Classification / Giobergia, Flavio. - (2025), pp. 2213-2218. (Intervento presentato al convegno 19th International Workshop on Semantic Evaluation (SemEval-2025) tenutosi a Vienna (AT) nel July 31 - August 1, 2025).

MINDS at SemEval-2025 Task 9: Multi-Task Transformers for Food Hazard Coarse-Fine Classification

Flavio Giobergia
2025

Abstract

Food safety is a critical concern: hazardous incident reports need to be classified to be able to take appropriate measures in a timely manner. The SemEval-2025 Task 9 on Food Hazard Detection aims to classify food-related incident reports by identifying both the type of hazard and the product involved, at both coarse and fine levels of granularity. In this paper, we present our solution that approaches the problem by leveraging two independent encoderonly transformer models, each fine-tuned separately to classify hazards and food products, at the two levels of granularity of interest. Experimental results show that our approach effectively addresses the classification task, achieving high-quality performance on both subtasks. We additionally include a discussion on potential improvements for future iterations, and a brief description of failed attempts. We make the code available at https://github.com/fgiobergia/SemEval2025-Task9.
2025
979-8-89176-273-2
File in questo prodotto:
File Dimensione Formato  
_SemEval_2025__Task_9___Food_Hazard-3.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 229.11 kB
Formato Adobe PDF
229.11 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3004130