We consider finite games where the agents only share their beliefs on the possible equilibrium configuration. Specifically, the agents experience the strategies of their opponents only as realized parameters, thereby updating and sharing beliefs on the possible configurations iteratively. We show that combining non-bayes updates with best-response dynamics allows the agents to learn the Nash equilibrium, i.e., the belief distribution over the set of parameters has a peak on the true configuration. Convergence results of the learning mechanism are provided in two cases: the agents learn the equilibrium configuration as a whole, or the agents learn those strategies of the opponents that constitute such an equilibrium.

Sharing Beliefs to Learn Nash Equilibria / Franci, Barbara; Fabiani, Filippo. - (2024), pp. 317-322. (Intervento presentato al convegno 2024 European Control Conference, ECC 2024 tenutosi a Stoccolma (Svezia) nel 25-28 June 2024) [10.23919/ecc64448.2024.10590955].

Sharing Beliefs to Learn Nash Equilibria

Franci, Barbara;
2024

Abstract

We consider finite games where the agents only share their beliefs on the possible equilibrium configuration. Specifically, the agents experience the strategies of their opponents only as realized parameters, thereby updating and sharing beliefs on the possible configurations iteratively. We show that combining non-bayes updates with best-response dynamics allows the agents to learn the Nash equilibrium, i.e., the belief distribution over the set of parameters has a peak on the true configuration. Convergence results of the learning mechanism are provided in two cases: the agents learn the equilibrium configuration as a whole, or the agents learn those strategies of the opponents that constitute such an equilibrium.
File in questo prodotto:
File Dimensione Formato  
Sharing_Beliefs_to_Learn_Nash_Equilibria.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 489.23 kB
Formato Adobe PDF
489.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003673