We study stochastic Nash equilibrium problems with expected valued cost functions whose pseudogradient satisfies restricted monotonicity properties which hold only with respect to the solution. We propose a forward-backward algorithm and prove its convergence under restricted strong monotonicity, restricted strict monotonicity and restricted cocoercivity of the pseudogradient mapping. To approximate the expected value, we use either a finite number of samples and a vanishing step size or an increasing number of samples with a constant step. Numerical simulations show that our proposed algorithm might be faster than the available algorithms.
Forward–Backward algorithms for stochastic Nash equilibrium seeking in restricted strongly and strictly monotone games / Franci, Barbara; Grammatico, Sergio. - (2021), pp. 221-226. (Intervento presentato al convegno 60th IEEE Conference on Decision and Control, CDC 2021 tenutosi a Austin (USA) nel 14-17 Dec. 2021) [10.1109/cdc45484.2021.9682852].
Forward–Backward algorithms for stochastic Nash equilibrium seeking in restricted strongly and strictly monotone games
Franci, Barbara;
2021
Abstract
We study stochastic Nash equilibrium problems with expected valued cost functions whose pseudogradient satisfies restricted monotonicity properties which hold only with respect to the solution. We propose a forward-backward algorithm and prove its convergence under restricted strong monotonicity, restricted strict monotonicity and restricted cocoercivity of the pseudogradient mapping. To approximate the expected value, we use either a finite number of samples and a vanishing step size or an increasing number of samples with a constant step. Numerical simulations show that our proposed algorithm might be faster than the available algorithms.File | Dimensione | Formato | |
---|---|---|---|
ForwardBackward_algorithms_for_stochastic_Nash_equilibrium_seeking_in_restricted_strongly_and_strictly_monotone_games.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2103.03593v2.pdf
accesso riservato
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
700.53 kB
Formato
Adobe PDF
|
700.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3003664