We consider the stochastic generalized Nash equilibrium problem (SGNEP) with joint feasibility constraints and expected-value cost functions. We propose a distributed stochastic projected reflected gradient algorithm and show its almost sure convergence when the pseudogradient mapping is monotone and the solution is unique. The algorithm is based on monotone operator splitting methods tailored for SGNEPs when the expected-value pseudogradient mapping is approximated at each iteration via an increasing number of samples of the random variable. Finally, we show that a preconditioned variant of our proposed algorithm has convergence guarantees when the pseudogradient mapping is cocoercive.

Distributed projected–reflected–gradient algorithms for stochastic generalized Nash equilibrium problems / Franci, Barbara; Grammatico, Sergio. - (2021), pp. 369-374. (Intervento presentato al convegno 2021 European Control Conference, ECC 2021 tenutosi a Delft (Netherlands) nel 29 June 2021 - 02 July 2021) [10.23919/ecc54610.2021.9655217].

Distributed projected–reflected–gradient algorithms for stochastic generalized Nash equilibrium problems

Franci, Barbara;
2021

Abstract

We consider the stochastic generalized Nash equilibrium problem (SGNEP) with joint feasibility constraints and expected-value cost functions. We propose a distributed stochastic projected reflected gradient algorithm and show its almost sure convergence when the pseudogradient mapping is monotone and the solution is unique. The algorithm is based on monotone operator splitting methods tailored for SGNEPs when the expected-value pseudogradient mapping is approximated at each iteration via an increasing number of samples of the random variable. Finally, we show that a preconditioned variant of our proposed algorithm has convergence guarantees when the pseudogradient mapping is cocoercive.
File in questo prodotto:
File Dimensione Formato  
Distributed_projectedreflectedgradient_algorithms_for_stochastic_generalized_Nash_equilibrium_problems-2.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 422.19 kB
Formato Adobe PDF
422.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2003.10261v3.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 241.27 kB
Formato Adobe PDF
241.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003651