We consider potential games with mixed-integer variables, for which we propose two distributed, proximallike equilibrium seeking algorithms. Specifically, we focus on two scenarios: i) the underlying game is generalized ordinal and the agents update through iterations by choosing an exact optimal strategy; ii) the game admits an exact potential and the agents adopt approximated optimal responses. By exploiting the properties of integer-compatible regularization functions used as penalty terms, we show that both algorithms converge to either an exact or an ϵ-approximate equilibrium. We corroborate our findings on a numerical instance of a Cournot oligopoly model.

Proximal-like algorithms for equilibrium seeking in mixed-integer Nash equilibrium problems / Fabiani, Filippo; Franci, Barbara; Sagratella, Simone; Schmidt, Martin; Staudigl, Mathias. - (2022), pp. 4137-4142. (Intervento presentato al convegno 61st IEEE Conference on Decision and Control, CDC 2022 tenutosi a Cancun (Messico) nel 06-09 December 2022) [10.1109/cdc51059.2022.9993250].

Proximal-like algorithms for equilibrium seeking in mixed-integer Nash equilibrium problems

Franci, Barbara;
2022

Abstract

We consider potential games with mixed-integer variables, for which we propose two distributed, proximallike equilibrium seeking algorithms. Specifically, we focus on two scenarios: i) the underlying game is generalized ordinal and the agents update through iterations by choosing an exact optimal strategy; ii) the game admits an exact potential and the agents adopt approximated optimal responses. By exploiting the properties of integer-compatible regularization functions used as penalty terms, we show that both algorithms converge to either an exact or an ϵ-approximate equilibrium. We corroborate our findings on a numerical instance of a Cournot oligopoly model.
File in questo prodotto:
File Dimensione Formato  
Proximal-like_algorithms_for_equilibrium_seeking_in_mixed-integer_Nash_equilibrium_problems.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2203.15410v2-2.pdf

accesso riservato

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 597.15 kB
Formato Adobe PDF
597.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003648