We consider a stochastic generalized Nash equilibrium problem (GNEP) with expected-value cost functions. Inspired by Yi and Pavel (Automatica, 2019), we propose a distributed GNE seeking algorithm by exploiting the forward- backward operator splitting and a suitable preconditioning matrix. Specifically, we apply this method to the stochastic GNEP, where, at each iteration, the expected value of the pseudo-gradient is approximated via a number of random samples. Our main contribution is to show almost sure convergence of our proposed algorithm if the sample size grows large enough.
A damped forward–backward algorithm for stochastic generalized Nash equilibrium seeking / Franci, Barbara; Grammatico, Sergio. - (2020), pp. 1117-1122. (Intervento presentato al convegno 18th European Control Conference, ECC 2020 tenutosi a St. Petersburg (Russia) nel 12-15 May 2020) [10.23919/ecc51009.2020.9143966].
A damped forward–backward algorithm for stochastic generalized Nash equilibrium seeking
Franci, Barbara;
2020
Abstract
We consider a stochastic generalized Nash equilibrium problem (GNEP) with expected-value cost functions. Inspired by Yi and Pavel (Automatica, 2019), we propose a distributed GNE seeking algorithm by exploiting the forward- backward operator splitting and a suitable preconditioning matrix. Specifically, we apply this method to the stochastic GNEP, where, at each iteration, the expected value of the pseudo-gradient is approximated via a number of random samples. Our main contribution is to show almost sure convergence of our proposed algorithm if the sample size grows large enough.| File | Dimensione | Formato | |
|---|---|---|---|
|
1910.11776v2.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
223.4 kB
Formato
Adobe PDF
|
223.4 kB | Adobe PDF | Visualizza/Apri |
|
A_damped_forwardbackward_algorithm_for_stochastic_generalized_Nash_equilibrium_seeking-2.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
432.24 kB
Formato
Adobe PDF
|
432.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3003645
