We consider a stochastic generalized Nash equilibrium problem (GNEP) with expected-value cost functions. Inspired by Yi and Pavel (Automatica, 2019), we propose a distributed GNE seeking algorithm by exploiting the forward- backward operator splitting and a suitable preconditioning matrix. Specifically, we apply this method to the stochastic GNEP, where, at each iteration, the expected value of the pseudo-gradient is approximated via a number of random samples. Our main contribution is to show almost sure convergence of our proposed algorithm if the sample size grows large enough.

A damped forward–backward algorithm for stochastic generalized Nash equilibrium seeking / Franci, Barbara; Grammatico, Sergio. - (2020), pp. 1117-1122. (Intervento presentato al convegno 18th European Control Conference, ECC 2020 tenutosi a St. Petersburg (Russia) nel 12-15 May 2020) [10.23919/ecc51009.2020.9143966].

A damped forward–backward algorithm for stochastic generalized Nash equilibrium seeking

Franci, Barbara;
2020

Abstract

We consider a stochastic generalized Nash equilibrium problem (GNEP) with expected-value cost functions. Inspired by Yi and Pavel (Automatica, 2019), we propose a distributed GNE seeking algorithm by exploiting the forward- backward operator splitting and a suitable preconditioning matrix. Specifically, we apply this method to the stochastic GNEP, where, at each iteration, the expected value of the pseudo-gradient is approximated via a number of random samples. Our main contribution is to show almost sure convergence of our proposed algorithm if the sample size grows large enough.
File in questo prodotto:
File Dimensione Formato  
1910.11776v2.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 223.4 kB
Formato Adobe PDF
223.4 kB Adobe PDF Visualizza/Apri
A_damped_forwardbackward_algorithm_for_stochastic_generalized_Nash_equilibrium_seeking-2.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 432.24 kB
Formato Adobe PDF
432.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003645