This paper presents VaN3Twin—the first open-source, full-stack Network Digital Twin (NDT) framework for simulating the coexistence of multiple Vehicle-to-Everything (V2X) communication technologies with accurate physical-layer modeling via ray tracing. VaN3Twin extends the ms-van3t simulator by integrating Sionna Ray Tracer (RT) in the loop, enabling high-fidelity representation of wireless propagation, including diverse Line-of-Sight (LoS) conditions with focus on LoS blockage due to other vehicles’ meshes, Doppler effect, and site-dependent effects—e.g., scattering and diffraction. Unlike conventional simulation tools, the proposed framework supports realistic coexistence analysis across DSRC and C-V2X technologies operating over shared spectrum. A dedicated interference tracking module captures cross-technology interference at the time-frequency resource block level and enhances signal-to-interference-plus-noise ratio (SINR) estimation by eliminating artifacts such as the bimodal behavior induced by separate LoS/NLoS propagation models. Compared to field measurements, VaN3Twin reduces application-layer disagreement by 50% in rural and over 70% in urban environments with respect to current state-of-the-art simulation tools, demonstrating its value for scalable and accurate digital twin–based V2X coexistence simulation.

VaN3Twin: the Multi-Technology V2X Digital Twin with Ray-Tracing in the Loop / Pegurri, Roberto; Gasco, Diego; Linsalata, Francesco; Rapelli, Marco; Moro, Eugenio; Raviglione, Francesco; Casetti, Claudio. - In: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. - ISSN 1536-1276. - ELETTRONICO. - (In corso di stampa).

VaN3Twin: the Multi-Technology V2X Digital Twin with Ray-Tracing in the Loop

Gasco,Diego;Rapelli,Marco;Raviglione,Francesco;Casetti,Claudio
In corso di stampa

Abstract

This paper presents VaN3Twin—the first open-source, full-stack Network Digital Twin (NDT) framework for simulating the coexistence of multiple Vehicle-to-Everything (V2X) communication technologies with accurate physical-layer modeling via ray tracing. VaN3Twin extends the ms-van3t simulator by integrating Sionna Ray Tracer (RT) in the loop, enabling high-fidelity representation of wireless propagation, including diverse Line-of-Sight (LoS) conditions with focus on LoS blockage due to other vehicles’ meshes, Doppler effect, and site-dependent effects—e.g., scattering and diffraction. Unlike conventional simulation tools, the proposed framework supports realistic coexistence analysis across DSRC and C-V2X technologies operating over shared spectrum. A dedicated interference tracking module captures cross-technology interference at the time-frequency resource block level and enhances signal-to-interference-plus-noise ratio (SINR) estimation by eliminating artifacts such as the bimodal behavior induced by separate LoS/NLoS propagation models. Compared to field measurements, VaN3Twin reduces application-layer disagreement by 50% in rural and over 70% in urban environments with respect to current state-of-the-art simulation tools, demonstrating its value for scalable and accurate digital twin–based V2X coexistence simulation.
In corso di stampa
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3003129
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo