This work explores a novel approach for the automatic design and optimization of unit cells (UCs) via kernel-based machine learning regression. Traditional UC optimization relies on brute-force full-wave simulations, which are computationally expensive and time-consuming. The proposed method uses the Least-Squares Support Vector Machines (LS-SVM) regression to build surrogate models enabling the efficient design space exploration. The optimal UC geometry obtained by the proposed optimization methodology is then validated through the complete design of a three-layer Transmitarray Antenna (TA), achieving a 32 dB peak gain at 30 GHz with approximately 50 % efficiency, a 1-dB bandwidth of 14 %, confirming its excellent radiation performance.

Unit Cell Design for Space-Fed Surfaces Via Kernel-Based Machine Learning Regression / Beccaria, M.; Soleimani, N.; Trinchero, R.; Pirinoli, P.. - (2025). (Intervento presentato al convegno 2025 URSI International Symposium on Electromagnetic Theory, EMTS 2025 tenutosi a Bologna (Ita) nel 23-27 June 2025) [10.46620/URSIEMTS25/JDLD6926].

Unit Cell Design for Space-Fed Surfaces Via Kernel-Based Machine Learning Regression

Beccaria M.;Soleimani N.;Trinchero R.;Pirinoli P.
2025

Abstract

This work explores a novel approach for the automatic design and optimization of unit cells (UCs) via kernel-based machine learning regression. Traditional UC optimization relies on brute-force full-wave simulations, which are computationally expensive and time-consuming. The proposed method uses the Least-Squares Support Vector Machines (LS-SVM) regression to build surrogate models enabling the efficient design space exploration. The optimal UC geometry obtained by the proposed optimization methodology is then validated through the complete design of a three-layer Transmitarray Antenna (TA), achieving a 32 dB peak gain at 30 GHz with approximately 50 % efficiency, a 1-dB bandwidth of 14 %, confirming its excellent radiation performance.
File in questo prodotto:
File Dimensione Formato  
Unit_Cell_Design_for_Space-Fed_Surfaces_Via_Kernel-Based_Machine_Learning_Regression.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 182.41 kB
Formato Adobe PDF
182.41 kB Adobe PDF Visualizza/Apri
Unit Cell Design for space-fed antenna via Kernel-based Machine Learning Regression_Accepted.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002866