In this paper we prove an optimal estimate for the norm of wavelet localization operators with Cauchy wavelet and weight functions that satisfy two constraints on different Lebesgue norms. We prove that multiple regimes arise according to the ratio of these norms: if this ratio belongs to a fixed interval (which depends on the Lebesgue exponents) then both constraints are active, while outside this interval one of the constraint is inactive. Furthermore, we characterize optimal weight functions.

An optimal estimate for the norm of wavelet localization operators / Riccardi, Federico. - (2025), pp. 1-4. (Intervento presentato al convegno SampTA25 tenutosi a Vienna (Austria) nel from July 28 to August 1, 2025) [10.1109/sampta64769.2025.11133537].

An optimal estimate for the norm of wavelet localization operators

Riccardi, Federico
2025

Abstract

In this paper we prove an optimal estimate for the norm of wavelet localization operators with Cauchy wavelet and weight functions that satisfy two constraints on different Lebesgue norms. We prove that multiple regimes arise according to the ratio of these norms: if this ratio belongs to a fixed interval (which depends on the Lebesgue exponents) then both constraints are active, while outside this interval one of the constraint is inactive. Furthermore, we characterize optimal weight functions.
File in questo prodotto:
File Dimensione Formato  
An_optimal_estimate_for_the_norm_of_wavelet_localization_operators.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 241.42 kB
Formato Adobe PDF
241.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002838