We propose a machine learning approach leveraging state-of-polarization dynamics to detect overlapping fiber anoma- lies. Simulated disturbances and XGBoost classification achieve near-perfect accuracy under noise, enabling precise identification of concurrent events and enhancing both fault detection and physical layer security in optical communication networks

Intelligent Detection of Overlapping Fiber Anomalies in Optical Networks Using Machine Learning / Malik, Gulmina; Dipto, Imran Chowdhury; Masood, Muhammad Umar; Cheruvakkadu Mohamed, Mashboob; Straullu, Stefano; Kishore Bhyri, Sai; Maria Galimberti, Gabriele; Pedro, João; Napoli, Antonio; Wakim, Walid; Curri, Vittorio. - (2025). (Intervento presentato al convegno 2025 IEEE Photonics Society Summer Topicals tenutosi a Berlin (Ger) nel 21-23 Luglio 2025).

Intelligent Detection of Overlapping Fiber Anomalies in Optical Networks Using Machine Learning

Gulmina Malik;Imran Chowdhury Dipto;Muhammad Umar Masood;Mashboob Cheruvakkadu Mohamed;Stefano Straullu;Vittorio Curri
2025

Abstract

We propose a machine learning approach leveraging state-of-polarization dynamics to detect overlapping fiber anoma- lies. Simulated disturbances and XGBoost classification achieve near-perfect accuracy under noise, enabling precise identification of concurrent events and enhancing both fault detection and physical layer security in optical communication networks
File in questo prodotto:
File Dimensione Formato  
Summer_topicals.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 384.36 kB
Formato Adobe PDF
384.36 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002698