At present, the decarbonization of the public transport sector plays a key role in international and regional policies. Among the various energy vectors being considered for future clean bus fleets, green hydrogen and electricity are gaining significant attention thanks to their minimal carbon footprint. However, a comprehensive Life Cycle Assessment (LCA) is essential to compare the most viable solutions for public mobility, accounting for variations in weather conditions, geographic locations, and time horizons. Therefore, the present work compares the life cycle environmental impact of different powertrain configurations for urban buses. In particular, a series hybrid architecture featuring two possible hydrogen fueled Auxiliary Power Units (APUs) is considered: an H2-Internal Combustion Engine (ICE) and a Fuel Cell (FC). Furthermore, a Battery Electric Vehicle (BEV) is considered for the same application. The global warming potential of these powertrains is assessed in comparison to both conventional and hybrid diesel over a typical urban mission profile and in a wide range of external ambient conditions. Given that cabin and battery conditioning significantly influence energy consumption, their impact varies considerably between powertrain options. A sensitivity analysis of the BEV battery size is conducted, considering the effect of battery preconditioning strategies as well. Furthermore, to evaluate the potential of hydrogen and electricity in achieving cleaner public mobility throughout Europe, this study examines the effect of different grid carbon intensities on overall emissions, based also on a seasonal variability and future projections. Finally, the present study demonstrates the strong dependence of the carbon footprint of various technologies on both current and future scenarios, identifying a range of boundary conditions suitable for each analysed powertrain option.

Life Cycle Assessment of Different Powertrain Alternatives for a Clean Urban Bus Across Diverse Weather Conditions / Peiretti Paradisi, Benedetta; Pulvirenti, Luca; Prussi, Matteo; Rolando, Luciano; Vinogradov, Afanasie. - In: ENERGIES. - ISSN 1996-1073. - 18:17(2025). [10.3390/en18174522]

Life Cycle Assessment of Different Powertrain Alternatives for a Clean Urban Bus Across Diverse Weather Conditions

Peiretti Paradisi, Benedetta;Pulvirenti, Luca;Prussi, Matteo;Rolando, Luciano;Vinogradov, Afanasie
2025

Abstract

At present, the decarbonization of the public transport sector plays a key role in international and regional policies. Among the various energy vectors being considered for future clean bus fleets, green hydrogen and electricity are gaining significant attention thanks to their minimal carbon footprint. However, a comprehensive Life Cycle Assessment (LCA) is essential to compare the most viable solutions for public mobility, accounting for variations in weather conditions, geographic locations, and time horizons. Therefore, the present work compares the life cycle environmental impact of different powertrain configurations for urban buses. In particular, a series hybrid architecture featuring two possible hydrogen fueled Auxiliary Power Units (APUs) is considered: an H2-Internal Combustion Engine (ICE) and a Fuel Cell (FC). Furthermore, a Battery Electric Vehicle (BEV) is considered for the same application. The global warming potential of these powertrains is assessed in comparison to both conventional and hybrid diesel over a typical urban mission profile and in a wide range of external ambient conditions. Given that cabin and battery conditioning significantly influence energy consumption, their impact varies considerably between powertrain options. A sensitivity analysis of the BEV battery size is conducted, considering the effect of battery preconditioning strategies as well. Furthermore, to evaluate the potential of hydrogen and electricity in achieving cleaner public mobility throughout Europe, this study examines the effect of different grid carbon intensities on overall emissions, based also on a seasonal variability and future projections. Finally, the present study demonstrates the strong dependence of the carbon footprint of various technologies on both current and future scenarios, identifying a range of boundary conditions suitable for each analysed powertrain option.
2025
File in questo prodotto:
File Dimensione Formato  
energies-18-04522.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 8.25 MB
Formato Adobe PDF
8.25 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002574