In this demo, we present a real-time, machine-learning-driven framework for early fault detection in optical fiber networks, leveraging continuous State-of-Polarization (SOP) monitoring and angular speed (SOPAS) analysis. By extracting polarization fingerprints from a Polarimeter and feeding them into a trained ML classifier, our system detects and categorizes physical anomalies, such as small hits, slow shake (oscillations), and fast shake (oscillations) on the fiber, before they escalate into service disruptions. This proactive mechanism enables timely alerts and a direction towards dynamic traffic rerouting, preserving network integrity. The demonstration showcases a fully functional remote pipeline that integrates AI-based sensing, classification, and automated response, laying the foundation for self-monitoring optical infrastructures

Demonstration of Real-Time AI-Enabled Smart Fault Detection using State-of-Polarization Monitoring / Malik, Gulmina; Masood, Muhammad Umar; Ambrosone, Renato; Dipto, Imran Chowdery; Mohamed, Mashboob Cheruvakkadu; Ali, Ahtisham; Straullu, Stefano; Bhyri, Sai Kishore; Galimberti, Gabriele Maria; Pedro, João; Napoli, Antonio; Wakim, Walid; Curri, Vittorio. - (2025), pp. 1-4. (Intervento presentato al convegno 2025 25th Anniversary International Conference on Transparent Optical Networks (ICTON) tenutosi a Barcelona (Spa) nel July 06-10, 2025) [10.1109/icton67126.2025.11125473].

Demonstration of Real-Time AI-Enabled Smart Fault Detection using State-of-Polarization Monitoring

Malik, Gulmina;Masood, Muhammad Umar;Ambrosone, Renato;Mohamed, Mashboob Cheruvakkadu;Ali, Ahtisham;Straullu, Stefano;Curri, Vittorio
2025

Abstract

In this demo, we present a real-time, machine-learning-driven framework for early fault detection in optical fiber networks, leveraging continuous State-of-Polarization (SOP) monitoring and angular speed (SOPAS) analysis. By extracting polarization fingerprints from a Polarimeter and feeding them into a trained ML classifier, our system detects and categorizes physical anomalies, such as small hits, slow shake (oscillations), and fast shake (oscillations) on the fiber, before they escalate into service disruptions. This proactive mechanism enables timely alerts and a direction towards dynamic traffic rerouting, preserving network integrity. The demonstration showcases a fully functional remote pipeline that integrates AI-based sensing, classification, and automated response, laying the foundation for self-monitoring optical infrastructures
2025
979-8-3315-9777-1
File in questo prodotto:
File Dimensione Formato  
Demonstration_of_Real-Time_AI-Enabled_Smart_Fault_Detection_using_State-of-Polarization_Monitoring.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 773.7 kB
Formato Adobe PDF
773.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Demonstration_of_Real-Time_AI-Enabled_Smart_Fault_Detection_using_State-of-Polarization_Monitoring_Icton2025_preprint.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 736.36 kB
Formato Adobe PDF
736.36 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3002566